

COMPUTER
SCIENCE

AND CODING
0 1 0 1 0 1 0 0 0 1
1 1 0 0 1 0 1 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1

Copyright © 2020 by Workman Publishing Co., Inc.

By purchasing this workbook, the buyer is permitted to reproduce pages for
classroom use only, but not for commercial resale. Please contact the publisher

for permission to reproduce pages for an entire school or school district. With the
exception of the above, no portion of this book may be reproduced-mechanically,
electronically, or by any other means, including photocopying-without written

permission of the publisher.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-1-5235-0277-6

Author: Grant Smith
Illustrator: Chris Pearce
Vetter: Dawn Dupriest
Designer: Abby Dening

Concept by Raquel Jaramillo

Workman books are available at special discounts when purchased in bulk for
premiums and sales promotions, as well as for fund-raising or educational use.

Special editions or book excerpts can also be created to specification.
For details, contact the Special Sales Director at the address below

or send an email to specialmarkets@workman.com.

Workman Publishing Co., Inc.
225 Varick Street

New York, NY 10014-4381
workman.com

WORKMAN, BRAIN QUEST, and BIG FAT NOTE-BOOK are
registered trademarks of Workman Publishing Co., Inc.

Scratch is a project of the Scratch Foundation, in collaboration
with the Lifelong Kindergarten Group at the MIT Media Lab.

It is available for free at https://scratch.mit.edu.

Printed in Thailand

First printing March 2020

10 9 8 7 6 5 4 3 2 1

mailto:specialmarkets@workman.com
https://scratch.mit.edu

WORKMA N PUBLISHING
N EW YO R K

the complete middle school study guide

COMPUTER
SCIENCE

AND CODING

EVERYTHING YOU NEED TO ACE

COMPUTER
SCIENCE

AND CODING

HI!
In this notebook you’ll find everything you’ll need to
ace computer science and coding: from understanding
computer systems to reading and writing with programming
languages; from using basic algorithms to writing Boolean
expressions; from working with Scratch and Python to
exploring web development. This is the really important
stuff that you’ll need to understand computer science
and to build a foundation in coding.

You’ll find the notes pretty straightforward, with the
following formatting to keep things organized:

• vocabulary words highlighted in YELLOW
• definitions set aside in boxes
• important people, places, dates,
and terms writ ten in blue

• doodles, graphics, and charts that
show the big ideas

• main ideas underlined

If you’re having trouble in computer science class or
have an issue with a coding project, this notebook will
help. It hits all the major points of computer science and
walks you through the basics of Scratch, Python, and
web development. It ’s also a great study resource!
Whether you want to refresh your memory, reinforce
class instruction, or teach yourself the basics, this
notebook is the way to go.

UNIT 1: COMPUTING SYSTEMS 1
1. What Is Computer Science? 2
2. What Is a Computer? 13
3. How Do We Interact with Computers? 29

UNIT 2: DATA AND ANALYSIS 39
4. Storing Information 40
5. Collecting and Using Information 57

CONTENTS

HEY!

COME CHECK OUT
MY GAME SO FAR.

UNIT 3: SOFTWARE ENGINEERING 67
6. Designing Computer Systems 68
7. Testing 73
8. Documenting 81
9. Incorporating

Feedback 89
10. Collaborating 97

UNIT 4: ALGORITHMS AND
PROGRAMMING 109
11. Using Algorithms 110
12. Programming Languages 121
13. Computational Thinking 139

I AM A
DATA TY PE.

UNIT 5: UNIVERSAL PROGRAMMING
PRINCIPLES 147
14. Variables 148
15. Conditional Statements 163
16. Loops 179
17. Events 187
18. Procedures 191

UNIT 6: PROGRAMMING
WITH SCRATCH 199
19. Getting Started 200
20. Basic Algorithms 223
21. Data and Operators 247
22. Control Blocks and Event Blocks 273
23. Reusing Scripts 299

LET'S GET
CODING!

UNIT 7: PROGRAMMING IN PYTHON 309
24. Getting Started with Python 310
25. Variables in Python 323
26. Strings 333
27. Numbers as Variables 351
28. Lists and Boolean Expressions 365
29. For Loops 381
30. While Loops and Nested Loops 393
31. Conditional Statements 403
32. Functions 423

UNIT 8: WEB DEVELOPMENT 443
33. What Is the Internet? 444
34. Cybersecurity 463
35. Creating a Basic Web Page 481
36. HTML Text Elements 497
37. Link Elements 511
38. Styling with CSS 523
39. Styling Individual Elements

with CSS 539

Index 555

1
Unit

Computing
Systems

TURN
THE

PAGE!

1111

Chapter 1
WHAT IS

COMPUTER
SCIENCE?

A COMPUTER is a device that stores and processes
(changes, moves, or rewrites) information. It can perform
complicated computations and organize and store huge
amounts of information. Computer science is the study of
computers and how computer technology can be used to
solve problems. It involves studying COMPUTING
 SYSTEMS , programming rules, data and analysis,
networking, the internet,
and how computers affect
our lives. Computers are
better than humans at
storing and sharing tons

COMPUTING SYSTEM
All the basic hardware (the parts

you can see and touch) and
software (the programs) that work
together to make a computer run.

12

of information, solving complex calculations quickly, and
learning things. Computer scientists use computers' abilities to
help them develop new technologies that make our lives easier.

Computer technology affects the way we live and think.
It can help us solve our problems and make our lives seem
easier, more fun, and safer.

For example:

* Computers helped navigate
spacecraft to the moon
and Mars.

* Robots help surgeons
perform surgeries with
great precision.

* Computers add realistic
visual and sound effects to
movies and video games.

13

Computer scientists use and create technology to solve
problems. They program computers to both complete tasks
better and faster as well as teach them how to do new
things. Becoming a computer scientist means shifting from
being only a consumer (someone who uses something) to
being a creator.

Computer science is a type of problem solving; it includes the
study of computers, their design, and the way they process
information.

Examples of what computer science IS and IS NOT:

COMPUTER SCIENCE
IS

COMPUTER SCIENCE
IS NOT

creating a phone app
(application or program) that
allows friends to share funny
cat videos with each other.

programming your own
video game.

watching videos
on the internet
of cats riding
tricycles.

playing your favorite
video game.

14

COMPUTER SCIENCE
IS

COMPUTER SCIENCE
IS NOT

writing a program that
calculates the answers to
the math problems in your
homework.

writing a program to
automatically post nice
comments on your friends’
pictures.

doing your math homework
on your school’s laptop.

commenting on the latest
picture your friend posted.

All the examples in the IS NOT list only use technology, while
the examples in the IS list create new technology.

DON'T JUST
PLAY ON YOUR

PHONE.
PROGRAM IT!

15

THE FIVE CONCEPT AREAS OF
COMPUTER SCIENCE
Computer science can be divided into five concept areas
(main parts) of study:

1. Computing
Systems
Computing systems are the
machines that run programs
and process information. Examples are desktop computers,
laptops, and phones. Many electronic devices are run by
 PROGRAMS and have small built-in computers. For example,
dishwashers, TVs, smart watches, and even some light bulbs.

2. Algorithms and
Programming
 ALGORITHMS and
programming involve writing
the programs (code) that tell
computers what to do. Programs
can be very complex-like iTunes,
Safari, Chrome, or Roblox-
following many different
instructions. They can also be
simple, like a program that
only prints out the message
“Hello, World!”

ALGORITHM
A list of steps or instructions
written in human language
that tells a person how to

complete a task.

PROGRAM
A set of instructions

(or an algorithm) that
has been translated into
commands a computer
can understand (code).

16

Writing a program is sometimes broken up into two steps:

STEP 1: The computer scientist
makes a list of step-by-step
instructions for what she wants
her program to do.

STEP 2: The computer scientist
translates her instructions into
a language (code) the computer
can understand. Now the
algorithm is a program.

Algorithm

Computers are powerful, but they really aren’t that smart.
They can only do what they're told. Programs give

computers the instructions they need to work.

Programming

17

3. Data and Analysis
 DATA and ANALYSIS refer
to collecting, storing, organizing,
and studying facts to help us
understand what the data means.
For example, in a personality test
program, we would want to collect
answers to questions (such as: “Do
you like having lots of friends
over to play games?” or “How do
you like to spend your free time?”), store the answers, and
study them to understand someone’s personality. Another
simple use of data might be to collect and store the score
in a video game so that we can see if a player has won,
or who the highest scorer was.

Computers are great at storing, sharing, and calculating
huge amounts of data. This makes them perfect for
analyzing data.

4. Networks and the Internet
 NETWORKS are a group of connected devices (like
computers, laptops, and servers). They share information,
and may also share resources like a printer. The INTERNET
is the worldwide network that connects millions of computers.
Part of studying networks and the internet is figuring out

DATA
raw, unorganized facts

ANALYSIS
organizing,

describing, and
understanding data

18

better and more secure ways to share information
across devices.

5. Impacts of Computing
Understanding the impacts of computing involve studying
how computers influence our lives, culture, safety, laws, and
behavior. Just because we can make new technologies doesn’t
always mean we should.

We should ask how these new technologies affect the lives
of others.

For example, what if you made a program that could hack
anyone’s phone and delete all their favorite pictures?

Questions to consider:
What would the effect be on the victims’ lives?

How would your actions affect your friendships?

Are there laws against using such programs?

Would it be wrong to share a program like that even
if we didn’t use it ourselves?

Would this new technology make life better or worse
for others?

19

w

 1. What is computer science?

 2. Which of these are most likely NOT computing systems?
A. Cell phones
B. Newer TVs
C. Books
D. Electronic readers

 3. What is a program, and why do computers need
programs?

 4. Computer science is NOT:
A. Studying interesting questions like how to make

deliveries faster using an algorithm
B. Building a computing system as a solution to

a problem
C. Playing computer games
D. Understanding how a new computer technology

could negatively impact people

 5. What is a computing system? Provide examples of
computing systems.

20

 6. Computer scientists have created systems that
help farmers produce more food for society. This
advancement most closely represents which of the
five concept areas of computer science?

 7. What is the difference between a consumer and
a creator?

 8. What is a group of connected computers called?

 9. Reviewing a collection of student scores from an exam
to understand how well the class did is an example of
which concept area of computer science?

 10. Explain what an algorithm is.

answers 21

 1. Computer science is the study of using computers
to solve problems.

 2. C

 3. A program is a set of instructions that has been coded
into a language that a computer can understand.
Without programs, computers wouldn’t understand
what we want them to do.

 4. C

 5. Computing systems are one or more computing devices.
They include laptops, tablets, and other devices that are
run by programs.

 6. Impacts of computing. While each of the five concept
areas of computer science are used to develop better
tools for farmers, the emphasis on how it benefits
society makes this an example of impacts of computing.

 7. Consumers only use programs or content. Creators make
the content that consumers use.

 8. A network, or computer network

 9. Data and analysis

 10. An algorithm is a list of instructions on how to
do something.

22

A COMPUTER stores, shares, and analyzes huge amounts
of data. It can also perform complex math calculations.

COMPUTERS THROUGH TIME
Thousands of years ago,
people made devices like the
 ABACUS to help them calculate
complex math.

Chapter 2
WHAT IS A
COMPUTER?

Although a CD (compact disc) can store
information like music, it’s not considered

a computer because the CD itself can’t
change information.

23

In the 1600s, computing became
a profession and the word “computer”
meant “a person who makes
calculations.” Computers (the people)
used a tool called the SLIDE RULE
to help them calculate.

In 1944, during World War II,
the first electronic computer
was made.
It was called
COLOSSUS MARK 1
and was used
by the British
government to
crack secret
German codes.

In 1945, Americans created a faster computer called ENIAC.

THIS IS
A BIG

COMPUTER.

ENIAC
Stands for “Electronic Numerical
Integrator and Computer,” which

was the first programmable,
general-purpose computer.

24

Early computers were
massive-they took up
entire rooms! These
computers were used
by large businesses,
governments, or
researchers.

The first mass-produced personal computer, the APPLE II,
was introduced in 1977. Owners could use the computer to run
simple programs or play games.

Today, computers are tiny and everywhere, including phones.
Smartphones are considered computers because:

they run programs (like messaging, photo editing,
and maps).

they store information (like photos, contact information,
and documents).

they perform calculations
(with a calculator, with the
clock/stopwatch, with maps).

THIS IS
A BIG

COMPUTER.

Smartphones are more
powerful computers than
the computer used on the

rocket that took astronauts
to the moon in 1969.

25

PARTS OF A WHOLE
Computers are made up of two parts:
 HARDWARE and SOFTWARE .

Hardware
Hardware is the physical
parts of a computer, like the
keyboard, mouse, and screen.
An easy way to determine
whether part of a computer
system is hardware is to look: If you
can see it with your eyes, it ’s hardware.

Software
Software is the set of programs (instructions) that tell
a computer what to do, like phone applications, editing
programs, and entertainment services. There are all kinds
of software: from games for a gaming system, to the
program that runs your microwave, to the web browser
on your phone. Software is
stored on storage devices
(hardware) like hard
drives, flash drives,
and CDs.

26

A CLOSER LOOK AT HARDWARE
Hardware can be separated into different categories:

Input
Input refers to the parts used to send information to a
computer, including a keyboard, mouse, game controller,
and webcam.

A L ITTLE
TO THE
LEFT!

An application (app) is a program designed for the
user to perform a task—like take a photo.

All applications are programs, but not all programs are
applications. Some programs are for the computer’s use

only—not the person using the computer.

27

Storage
Storage refers to the parts that the computer uses to store
information, including hard drives, USB FLASH DRIVES ,
CDs, and RAM .

Processing
The processing parts of the computer run programs,
interpret input, and supply output, including the central
processing unit (CPU) and the graphics processing unit (GPU).

CENTRAL PROCESSING UNIT (CPU)
This is the brain of a computer. It receives input information
and executes commands from other hardware and software.

USB (UNIVERSAL SERIAL BUS)
FLASH DRIVE

Also known as a thumb drive or a USB stick;
a portable plug-in device used to store information

RAM (RANDOM ACCESS MEMORY)
A type of computer memory where information can be stored

28

It is made up of the main memory, the control unit, and the
arithmetic logic unit.

GRAPHICS PROCESSING UNIT (GPU)
This part of the computer focuses on graphics. Graphics are
images of all kinds (pictures, animations, videos). The GPU
delivers images, animations, and videos that can be viewed
on the computer’s screen. If you want to get the best picture
quality for your favorite computer game, you’ll need a high-
end GPU to make the graphics look good.

Think of the CPU as a jack-of-all-trades (like a handyman)
and the GPU as the master of a trade (like a plumber). The
CPU is great for completing a variety of everyday tasks well;

the GPU specializes in processing display information quickly.
You wouldn’t want a handyman to replace all the pipes in

your home. Instead, you’d want your plumber to use his or her
special skills to perform that task.

29

Output
Output refers to the parts that the
computer uses to send information to you.
This includes the projector, the monitor,
the printer, speakers, and headphones.

The parts of hardware all work together.
Data (information) comes from the
user (who may be a person or a
computer) and goes through the input
device into processing. Data can then
be placed in storage (saved) or taken
out of storage and then sent to the user.

The process is like digestion: We take in food, process it and
store it, and then pass it out.

Is a touch screen an
input or output part?

It’s both!

IN PUT OUTPUTPROCESSING/
STORAGE

30

A CLOSER LOOK AT SOFTWARE

Application Software (Apps)
Application software (apps) are programs that allow the
user to complete tasks.

Word processors, internet browsers, and games are all
examples of application software. Every app in a phone’s
app store is also application software. There’s a wide
variety of application software, and programmers can
specialize in one of the subcategories.

FOR EXAMPLE
* A WEB DEVELOPER is a programmer who makes

application software that runs on websites.

* A MOBILE DEVELOPER is a programmer who writes
application software for mobile devices like phones
and tablets.

* A GAME DEVELOPER is a programmer who develops
application software video games.

“App” is short for “application.”

31

System Software
System software are the programs that make sure the
individual hardware devices work together and properly
with other programs. OPERATING SYSTEMS like
Windows on a laptop or iOS (the mobile operating system)
on an iPhone are examples of system software. Operating
systems run in the background; you cannot see what they’re
doing on-screen. The operating system makes it possible to
install games, social media, and other apps on the phone.

Applications cannot work
without the system software. OPERATING SYSTEMS

Programs that communicate
with hardware, allowing
other programs to run in

the background.

32

Hardware and software are pretty much useless on their
own. Only when they are put together in a complete system
do they become tools.

For example:

HARDWARE SOFTWARE FINAL RESULT

PHONE TO
TAKE SELFIESCAMERA PHOTO APP

PRINTED
PARTY

INVITATION

KEYBOARD WORD
PROCESSING
PROGRAMPRINTER

=+

+

SENSORS

CAMERAS

CAR
STREET

NAVIGATION
PROGRAM

SELF-DRIVING
CAR

+

+

=+

=+

33

w

 1. What is the difference between hardware and
software?

 2. What is a computer?

 3. How have computers changed over time?

 4. What kind of hardware is each of these parts?
Choose from input, output, processing, or storage.
A. TV screen:
B. CPU:
C. Keyboard:
D. Headphones:
E. USB flash drive:

 5. How are storage and processing hardware parts
different? Are they both necessary for a computer
to work?

 6. What is the difference between the CPU and the GPU?

 7. Why was the Apple II significant?

34

 8. How is a new smartphone similar to the first computers
ever made? How is it different?

 9. What kinds of tools existed before programmable
computers were invented?

 10. What is the difference between system software and
application software?

answers 35

 1. Hardware is the physical parts of a computer,
and software is the code or programs that the
computers run.

 2. A computer is a device that stores and processes
information.

 3. Computers have become smaller and much, much more
powerful over time.

 4. Hardware:
A. Output
B. Processing
C. Input
D. Output
E. Storage

 5. A processing unit like a CPU runs programs, and a
storage unit like RAM stores information. Both parts are
necessary in a computer because a computer is a device
that can store and manipulate data (which requires a
processor).

36

 6. A CPU is the main brain of a computer and runs most of
the programs, while the GPU mainly processes display
information for your screen.

 7. It was the first mass-produced personal computer.

 8. Just like the first computers, smartphones use both
software and hardware to run. They also both have
input, output, storage, and processing parts. But
smartphones are much more powerful and many times
smaller than the first computers.

 9. Before programmable computers were invented, there
were several tools that humans used to help solve math
equations, like the abacus and the slide rule.

 10. System software makes sure the individual hardware
devices properly work together and with other programs.
Application software are programs that allow the user
to perform specific tasks.

37

I

computers

38

Over time, computers have become easier to use. However,
things can still go wrong. When problems happen, there are
things you can do.

HUMAN-COMPUTER
INTERACTION

The USER INTERFACE (UI) includes all the parts of a
computing system that you use to operate the computer. For
example, the user interface for playing a video game on a
phone includes the touch screen, speakers/headphones, and
the game’s on-screen menus, buttons, and graphics.

Chapter 3
HOW DO WE

INTERACT WITH
COMPUTERS?

39

A GRAPHICAL USER INTERFACE (GUI, pronounced
“GOO-ey,” like soft brownies) is a type of user interface
that uses icons and symbols on a
screen instead of just plain text. A
GUI makes it easy for just about
anyone to use a computer. Most user
interfaces are GUIs.

The COMMAND-LINE INTERFACE (command line, or CLI)
uses only text to operate a computer. This type of interface
is more difficult to use because the user must type in specific
commands, or phrases, for it to work. Although most computer
users will never need to use a command-line interface, it ’s a
good thing to learn if you’re a computer scientist.

Human-computer interaction
(HCI) is the part of computer
science that studies and
improves how the user works
with computers. UIs are easy
for all people to use, including
those who are blind or low
vision or are deaf or hard of
hearing.

You can try out
an example of

human-computer
interaction by finding

the “Accessibility”
settings on your

computer or phone and
turning on the screen

reader to listen to
it read aloud what’s

on the display.

40

WHERE'S
THE

J ELLY?

FOR EXAMPLE, many phones have built-in screen readers.
This allows users who are blind or have a hard time seeing
to still use their phone.

TROUBLESHOOTING
 Troubleshooting is taking a systematic, or
step-by-step, approach to solving errors
within a computing system or software.
Or, debugging programs in software.

Using a systematic approach means following a fixed
plan or process, step-by-step. Like instructions for making
a PB&J sandwich. If your computer won’t turn on, one
of the first things you would do is make sure it is plugged
into a power source, and then you would check that all the
power connectors inside the
computer are connected
securely. The benefit to a
systematic approach is that
you can repeat the steps
exactly and you can be sure
you haven’t left anything out.

A program that reads aloud
the words on the screen.

41

 Debugging is finding and correcting “bugs,” or
errors, within a program. Debugging is a
specific form of troubleshooting that
is used when programming. Bugs
may be caused by typos
or by not following the
rules or format of the
programming language.

Troubleshooting Strategies
Troubleshooters use some of these strategies to help them
find and fix problems:

Swapping in working parts from
other computers, such as monitors,
keyboards, and even hard drives,
motherboards, or power supplies.

Creating a diagram to trace the problem. For example,
creating a diagram of all the components in a computer
system and how they connect to each other helps
a troubleshooter stay organized as they hunt for
the problem.

42

Making changes in the software to see if the hardware
will work. Sometimes a software update has bugs in it
and you may need to go back to the previous version. Or
maybe you just need to install a new driver (a program
that tells the computer how to interact with a piece
of hardware).

Checking software settings and the compatibility
of components. Some software is made for specific
hardware. For example, you can’t install an iPhone app
on an Android phone.

Getting help from a more knowledgeable troubleshooter.
Sometimes an issue is too big for one person to solve on
their own. There are many websites dedicated to helping
people troubleshoot all sorts of computer issues-they
are a great resource to search through.

43

w

 1. What is troubleshooting?

 2. Which of these is NOT a troubleshooting technique:
A. Using a checklist
B. Getting help from someone else
C. Replacing a computer
D. Swapping out parts one at a time

 3. What does taking a systematic approach mean?
Why is it useful?

 4. If your computer won’t turn on, which of these things
should you do first?
A. Try to take it apart.
B. Make sure the power cable is plugged in.
C. Assume it ’s broken and return it to the store.
D. Press hard on the keys.

 5. What is debugging?

 6. How is troubleshooting different from debugging?

44

 7. Which area in computer science studies the user
interface of computers?

 8. When you’re playing a game on an iPad, which type
of user interface is used?

 9. What makes a good user interface?

answers 45

 1. Solving problems by using a systematic, or
step-by-step, approach.

 2. C

 3. It means using a step-by-step process that is
repeatable with similar results.

 4. B

 5. Debugging is finding and fixing errors in a program.

 6. Troubleshooting is the general process for fixing
problems, but debugging specifically has to do with
finding and fixing errors in a program (the code).

 7. Human-computer interaction

46

 8. Graphical user interface (GUI)

 9. A good user interface is one that makes it easy for all
types of users to use.

I CAN'T
FIGURE

THIS OUT.

IT'S NOT YOUR FAULT.
THE USER INTERFACE

WAS POORLY DESIGNED!

47

48

Unit

2
Data and
Analysis

DATA
RULE S!

3939

Chapter 4
STORING

INFORMATION

PAST
STONE AGE DARK AGES

THE INFORMATION AGE
Our world has moved through the Stone Age, the Dark Ages,
and the Industrial Age. Many say that right now we are living
in the INFORMATION AGE. That ’s because we have shifted

40

FUTURE
INDUSTRIAL AGE INFORMATION AGE

from a focus on making stuff with our hands to using
information technology to create. We have found new
ways to use information to help us create.

Computers are INFORMATION PROCESSORS . This
means they take information and make it easier for us to
use. For example:

Map apps process information from satellites to
help us find the quickest route to our destination
and even avoid traffic.

Social media apps (such as Snapchat, Twitter,
Instagram, or Facebook) process our personal
information (likes, posts, etc.) and create profiles

41

of who we are that businesses can use to try to
sell us stuff.

Note: You don’t pay anything to use social networks,
but that doesn’t mean they are free: The cost of using
them is that you hand over tons of information about
yourself. That ’s why it ’s always important to get
guardians’ permission and guidance before giving out
ANY personal information online.

Self-driving cars gather
and analyze large amounts
of information to make
predictions and decisions.
 RADAR (using radio
frequency to detect the
presence of or distance
from an object), LIDAR
(using laser light to
measure the distance to a target), ultrasonic sound waves,
and video recordings from cars’ external cameras and
sensors are collected, temporarily stored on the cars’ hard
drives, then sent over the internet to powerful computers
that analyze the data using artificial intelligence (AI)
programs. The AI programs piece the data together to
learn how to drive by analyzing how humans drive safely.

RADAR
Stands for “radio detection

and ranging”

LIDAR
Stands for “light detection

and ranging”

42

ARE YOU WORRIED
ABOUT ROBOTS
TAK ING OVER
THE WORLD?

HOW DO YOU KNOW
IT HASN ’T HAP PENED

ALREADY?

The more information we have and the better tools we have to
understand the information, the better decisions we can make.
For example, when you try to buy a birthday present for your
friend, it is much easier to do than trying to buy a present
for a new kid that just moved into town. This is because you
have more information about your friend, so you’re able to
make a better decision about what they would like.

COMPUTERS USE DATA
 DATA is a collection of unorganized figures, words, and
numbers that have not yet been given meaning. Data has
many different forms depending on what kind of information
it represents.

 INFORMATION is data that has been organized to have
meaning. A context is given to the data. For example, all

43

the answers to a survey are data, and the average of the
results is information.

Input data is the unorganized information entered into
the computer.

Output data is the information after
the computer has processed it.

INPUT DATA OUTPUT DATA

In a video game: pressing
keys or buttons on a game
console

The character moving
around the screen

In social media: typing
comments or uploading
photos and videos

Edited videos and photos
along with your profile

the computer
processes

44

$800

$600

$400

$200

M
ONDAY

TUE SDAY
W

EDNESDAY
THURSDAY
FRIDAY
SATUR DAY
SUNDAY

D UGHNUT SALES

INPUT DATA OUTPUT DATA

On a microwave oven:
selecting numbers or
buttons on the keypad

The food cooking in the oven
for a given amount of time

In a graphing program:
entering numbers for
different categories

A graph of the numbers

Computers take input data like answers to questions,
numbers, and uploaded images and turn the data into a
format they can understand and process. For example,
pictures are broken up into millions of tiny chunks by a
computer, and then the color of each chunk is recorded

45

in a long sequence of
code. The computer then
processes the code and
sends it back to the user as
output data. To show the
picture, the computer reads
the long sequence of code and reconstructs the image on
your screen by displaying the corresponding color in each
tiny chunk, kind of like a super-detailed paint by number.

PROCESSING

OUTPUTINPUT

STORAGE

CODE
A system of symbols, letters,

and numbers used to
represent something else

46

ENCODING DATA
Data has to be writ ten in
a format the computer will
understand. This means you
have to ENCODE the data
so that the computer can
process it. When you encode information, you change an
image, video, words, etc. into code. For example, MORSE
CODE OPERATORS in World War II would encode writ ten
messages into dashes and dots that were sent over
telegraph wires.

When you DECODE information, you
convert code into an understandable
form of communication. For example,
when the Morse code operators would
receive coded messages in the form of
dots and dashes, they would decode
the dots and dashes back into English.

There are several DATA ENCODING SCHEMES we
can use to help a computer understand input data. Data
encoding schemes are ways that we can represent all
types of information so that computers can understand it.
Computers only understand sequences of the digits 1 and 0.

An outdated communication system
that used electrical signals.

MORSE CODE
Uses dashes and dots

to represent the letters
of the alphabet

Morse code operator

47

Any code that uses 1s and 0s is referred to as a BINARY
 CODE . (This will be discussed in detail later.) Encoding
schemes were created to help computers understand,
interpret, and create data by reducing all data-images,
sounds, videos, numbers, colors, symbols, and other types
of information-to 1s and 0s.

You could imitate the way computers store an image by
making lists of 1s and 0s, where 0 is a white box on the
grid and 1 is a green box. Here’s how the data would be
represented to draw a simple giraffe on a 5 x 5 grid.

ROW 1: 1, 1, 0, 0, 0

ROW 2: 0, 1, 0, 0, 0

ROW 3: 0, 1, 0, 0, 0

ROW 4: 0, 1, 1, 1, 0

ROW 5: 0, 1, 0, 1, 0

Encoding Colors
Different types of data, like colors, numbers, and pictures,
can be encoded in different ways. The most common ways
colors can be encoded are through the coding schemes RGB
and HEXADECIMAL .

You can use a scanner to encode an old photograph into digital
data that a computer can understand. Scanners work by
using a sensor that detects colors and encodes the entire

48

(255, 203, 5)
 R G B

photo into a series of number values. The scanner puts all
these values in an order that a computer can understand
and use to re-create the image on a computer screen.

RGB is color notation that uses three numbers separated by
commas, where each number is between 0 and 255 (computers
encode each value to binary numbers). Each of the three
numbers represents a different shade of red, green, and
blue. (That ’s where the name RGB comes from!) When the
different shades of red, green, and blue are combined, they
can make many more colors.

There are 16 million ways
to combine three numbers
between 0 and 255. This
means that there are
16 million colors that can
be represented in the RGB
encoding scheme.

The hexadecimal color notation (or “hex” for short) uses
six characters to represent the same 16 million colors as
RGB. Hexadecimal is different from RGB because it uses
numbers and let ters. It uses combinations of the numbers
0-9 and let ters A-F. For example, #FF00B4 would make
a pink color by using the let ters F and B as well as the
numbers 0 and 4. Each set of two characters (such as

49

The computer language CSS
uses this symbol to represent
hexadecimal colors. RED GREEN BLUE

FF 00 B4

FF, 00, and B4) represents a different color: The first two
characters represent red, the next two green, and the
final two blue-and just like with RGB, the different
number/let ter combinations represent different shades
of each individual color.

Although data such as colors can be represented in different
ways, the important part is that each color uses an encoding
scheme so that computers can understand the information.

50

Representing Colors
In the table below, the first two columns are schemes
(ways) that computers read colors. Each encoding scheme
is translated into binary code. The other three columns are
examples of how humans read or identify colors.

COMPUTERS HUMANS

HEX CODE RGB ENGLISH SPANISH VISUALLY

FF0000 255,0,0 Red Rojo

0000FF 0,0,255 Blue Azul

FFFF00 255,255,0 Yellow Amarillo

008000 0,128,0 Green Verde

000000 0,0,0 Black Negro

Encoding colors into numbers and letters is just one way
information is made readable by computers. Sounds,
keyboard inputs, touch screen taps, thumbprint readings,
GPS locations, and all sorts of data are collected and
encoded into a format that computers can understand.

51

w

For questions 1-3, complete the sentences.

 1. We are currently living in the Age.

 2. Converting data into code is called .

 3. Converting data from code to a readable format is
called .

 4. What is the difference between data and information?

 5. Label each option below as an example of encoding or
decoding.
A.	Green	→	008000
B. 000000	→	Black
C.	Amarillo	→	255,255,0
D. FF0000	→	

 6. How many different colors can be made using
hexadecimal or RGB?

52

answers

→ → →

 7. Label which color each of these pairs represents in this
hexadecimal code:

33 54 A2

 8. What is data encoding, and why do computers need it?

 9. How do social media companies use the information you
share to make money?

 10. Name one data encoding scheme.

53

→ → →

 1. Information

 2. Encoding

 3. Decoding

 4. Data is unprocessed or raw facts, and information is
data that has been processed into usable or useful facts.

 5. A. Encoding
B. Decoding
C. Encoding
D. Decoding

 6. About 16 million

 7. Red Green Blue

33 54 A2

 8. Data encoding is converting data into a format that
computers can read. Computers can only understand
data that is encoded into binary, so images, sounds, text,
and other types of data must be encoded so a computer
can read it.

54

 9. Every post, picture, video, or other bit of information you
share online gives businesses clues about you and what
you like to buy. Companies can sell this information to
advertisers.

 10. There are many data encoding schemes. Acceptable
answers are ways to represent information in a form
computers can understand. Examples include: binary,
hexadecimal, RGB, or similar.

55

FF0000RED

56

Chapter 5
COLLECTING
AND USING

INFORMATION
There are many ways to collect information. You can:

conduct interviews

hand out surveys

make observations

Computers can be used to make all
these methods more EFFICIENT .
A survey can also be a type of
sensor that takes human input.
Computers can collect and analyze data
faster and more accurately than humans.

EFFICIENT
Takes less time or effort

57

INTERVIEWS
 INTERVIEWS gather information through asking questions.
They are a great way to gather detailed information from
people. When interviewing, we can ask follow-up questions to
get more information and to more clearly understand the
interviewee. Interviews work great if you only need to collect
data from a small group of people.

A downside to interviews is that data from responses is
not easily COMPUTABLE . This means that we can’t use
a math formula or computer algorithm to find a pattern in
the data. For example, we can’t find the average of a page
of writ ten answers. But we can find the average of a group
of numbers.

SURVEYS
A SURVEY is a list of questions. Surveys can be completed
and sent digitally through email, websites, or other types
of programs. They can also be completed on paper. The
responses to a survey can give us general information about
a large group of people.

Computers use the information provided in surveys to
efficiently compare large amounts of data.

The person being interviewed

58

Surveys are great because we can send them out and
people can complete them on their own. Surveys are used
because they save time.

A downside to surveys is that people may not take the survey
seriously, or they may not complete it at all. Another downside
is that it ’s more difficult to gather very detailed information
because follow-up questions can’t be personalized.

Different types of survey questions provide different
types of data:

 Open-ended questions allow for more detailed responses,
but like interview responses, the data is more difficult for
a computer to analyze.

 Multiple-choice questions are great for finding trends and
patterns. Election ballots use multiple-choice questions, where
voters select one candidate for each position. This makes it
easy for a computer to analyze: The candidate with the most
votes wins! The downside to multiple-choice questions is that
the options are limited to the choices given, which means we
won’t get detailed responses like with open-ended questions.

59

HEY, ALL-STAR!
WHAT‘S THE

SCORE?

THIS ISN ’T THE TIME
TO DO AN INTERVIEW—

JUST OBSERVE
THE GAME!

 LINEAR SCALE QUESTIONS allow users to rank their
answer. For example, ice-cream taste testers rate how much
they like a new flavor on a scale of 1 to 5, where 1 means
they don’t like it and 5 means they love it.

Computers use multiple-choice questions and linear scale
questions to more efficiently compare data. Computers can
also use the data provided to calculate and identify trends.

OBSERVATIONS
OBSERVATIONS require looking at an event and making
a record of it.

Data is collected at sports games
through observation. Points,
fouls, penalties, times, and
distances are recorded
to understand much more
than just who won.

Computers can make
comparisons and
predictions based
on observations.

60

USING DATA
The first computing machines were made to calculate
CENSUS information. The population in the United States
was getting so big that the government needed a way to
add up all the survey data. The
HOLLERITH TABULATING MACHINE
was used to calculate the survey
results, which provided useful
information to the government.
Computers have always been
used to help make sense of large
amounts of data.

Charts and Graphs
Charts and graphs are ways to visualize data. Computer
applications use different types of charts to represent
different types of information clearly. Charts and
graphs are tools that data scientists can use to visualize
information in order to analyze it, draw conclusions, and
communicate the information.

CENSUS
An official count or
survey that collects
information about a

population (for example,
where they live, their age,

and number of people
in the household)

1890—Hollerith Tabulating Machine
A major step toward modern-day computers,

this machine read and summarized
information stored on punch cards.

61

PLAYER

PO
IN

TS

ANN MAX IN DRA CAM MEL

SA
LE

S
(T

H
O

US
A

N
DS

)

Y EAR

6

5

4

3

2

1

VOLLEYBALL, GAME 6

EBOOK SALE S

50

40

30

20

10

2014 2016 2018 2020

 Line graphs are used to show how something changes
over time. For example, a company could use a line graph
to show the growth in sales of their ebooks.

 Bar graphs are used to compare different values in a
category. For example, they can be used to compare the
number of points scored by each player on a volleyball
team.

62

J ELLY

CHOCOLATE

PLAIN

GLAZED

DOUGHNUT SALE S

Pie charts are used to show the percentage of parts of a
whole. For example, they can be used to show the popularity
of different doughnuts sold in a bakery.

63

w

 1. Which of the following questions would result in easily
computable data? (Choose all that apply.)
A. Do you like eating spicy food?
B. Does your nose run when you eat really spicy food?
C. Draw a picture of the spiciest thing you have eaten.
D. On a scale of 1 to 5, how spicy are the cafeteria’s

jalapeño poppers?

 2. Two ways (of many) to collect data are .

 3. What is one advantage conducting interviews has over
handing out surveys?

 4. If you wanted to find out which sports team is the
most popular among 100 nearby kids, what kind of
data collection tool would you use?

 5. If you want to gather easily computable data, which
two question types should you avoid?

 6. Give one example of when computers are used to
collect data.

64

answers

 7. Your friend is running for class president. They want
to quickly and easily collect information from all the
students to see what kinds of changes they would like
the new class president to make. What data collection
method would you suggest and why?

 8. Which graph or chart would you use to display plant
growth measured monthly over a two-year period?

 9. Which graph or chart would you use to show how
many cats and dogs make up the population of an
animal shelter?

65

 1. A, B, D

 2. Conduct interviews, hand out surveys,
or through observation

 3. Conducting interviews gives you more control over the
process. You are able to interact with the subject and
prod for more relevant answers if you aren’t getting the
data you need.

 4. Interviewing one hundred people would take way too
long. So, the best option would be a simple survey.

 5. We should avoid open-ended and interview-type
questions.

 6. Computers are used to collect all sorts of data,
for example, about people using social media, maps
for navigating in the car, voting, and more.

 7. To collect data from a large number of people, surveys
are the easiest collection method. Answers to survey
questions produce easily computable data.

 8. A line graph can be used to show a trend over time.

 9. A pie chart can show the percentage of categories in
a population.

66

READ ANYTHING
GOOD LATELY?

TXT

Unit

3
Software

Engineering

6767

Chapter 6
DESIGNING
COMPUTER
SYSTEMS

THE ENGINEERING
DESIGN PROCESS
When designing computers or programs, computer scientists
follow an ENGINEERING DESIGN PROCESS to help them
understand and improve their designs. Their goal is to make
the program as efficient and user-friendly as possible.

 ENGINEERING is a branch of science
that studies the design, building, and use
of machines and structures to solve
problems. Computer engineering is the
application of study of computer science
and the practice of engineering to

68

computer software and hardware. Software engineering is
an application of computer science.

Step 1: Identify the Problem
Software engineers identify the problem and what they
need to find a solution. They ask themselves:

What is the problem I want to solve?

• Example: find the
shortest way home
from school that includes
stopping at the library
and grocery store.

There are many slightly different engineering design processes,
but a basic version is

1. identify the problem
2. plan a solution
3. build/make the plan
4. test
5. improve

and then the cycle
starts again.

69

What can be used to help solve the problem?

• a map showing the locations
• distances between locations
• type of transportation used

What features will I need to solve the problem?

• be able to calculate
• be able to draw a map

This stage may include collecting and analyzing data
from people who face the same problem. This could include
interviewing people, sending out surveys, or observing people.
It can also include the use of sensors or GPS tracking.

Step 2: Plan
Software engineers develop plans
for a solution to the problem.
Planning can include
making lists or drawing maps
of a proposed solution. Plans
should be very detailed.

70

Step 3: Build
The code is writ ten, and other parts of the solution are
added to the program. The build step ends when a working
product is completed.

Step 4: Test
Identify problems by testing the source code or solution.
Software engineers usually ask people to use the product
and give feedback. There are
different levels of testing.
In the early stages, the
programmer will run tests on
their own; then they will ask
peers to test their solution.
Later the programmer will ask
a group of users to test the
solution and give feedback.

Step 5: Improve
Fix problems and improve the solution. In this step, the bugs
or other issues identified in the test step are corrected.

71

EVERYDAY ENGINEERING
Powerful technologies have become smaller, cheaper, and
easier to work with, which means anyone can design and
build amazing things. With Lego robotics, drones, 3-D
printers, desktop laser cutters, micro:bits, Arduinos, and
Makey Makeys, you can become an everyday engineer.

micro:bits and Arduinos are very small computers on
a single chip that can be programmed to do a number
of different things, such as keep track of data like a

fitness tracker, or behave like a game controller. They
are used to teach students coding and programming.

Makey Makeys (a type of microcontroller like a
micro:bit or Arduino) are electronic invention kits for

kids that allow the user to use alligator clips to connect
everyday objects to computer programs. This allows

the user to control the objects in a different way.

72

Chapter 7
TESTING

Testing is an important part of the engineering process. As
Step 4 in the engineering design process, this task takes up
the most time.

Many things can go wrong with programs. These are ways
programmers try to limit the number of problems in their
programs so that they run smoothly.

DEFENSIVE PROGRAMMING

 DEFENSIVE PROGRAMMING is designing your program
so that it keeps working even when things don’t go as
expected. One way to do this is to intentionally get your
program to produce errors to see how you should solve them.

For example, if you write a program where the user should
input their email address, you could try to produce an error
by entering text that is not an email address.

73

Then ask:
Does the program still run correctly if a user inputs their
phone number or name in the email address field?

What can you do to prevent the user from inputting the
wrong information?

 USE CASES and TEST CASES are used in defensive
programming to help you see where adjustments may be
needed in a program.

Use Cases

Use cases are lists of actions users can take. It describes
how users will use your program.

IF IT AIN'T BROKE . . .
BREAK IT!

I DON'T
THINK

THAT'S HOW
IT GOES!

74

The list could be a very detailed flowchart, or it could be
a few ideas you come up with.

It ’s important that the user is able to run a program without
errors. For example, after you complete the programming of
a game, you should play the game from beginning to end to
make sure it runs the way you want it to.

Test Cases
Use case tests check to see if the user can complete a goal
in the program. For every use case, there will be many more
test cases. Test cases are specific, more detailed tests. They
use conditions that your program may run under. The use
case is used to define the functionality required. Use case
testing is then testing for that functionality.

 Test cases focus on one condition (or variable) at a time to
make sure the program works in all situations.

For example, if you were creating a video game, you could
create a test case that makes sure your character jumps
when you press the spacebar.

If that test passes, you should
also test to see what happens
if you hold down the spacebar
instead of pressing it just once.

Programming defensively
would mean making sure
that, no matter how long
the user held down the
spacebar, the character
would jump just once.

75

I CAN
 FLY!

If you defensively programmed your game, then the
character will just jump once.

If you didn’t defensively program,
or forgot to test what happens
when the user holds down the
spacebar, the character might
do something you don’t want
them to do.

Another example: If you programmed a calculator app
that divides your number by 10, test cases make sure your
program works with different types of numbers. Would the
program crash if the user tries to enter 1 or 0?

It is important to pick test cases that use many types of
input. For example, for a calculator app, instead of testing
only with digits 0-9, choose positive and negative integers,
rational numbers, and zero.

76

Remember from Math Class
Positive integer: a whole number greater than zero,

not a fraction or a decimal.
For example, 2, 5, 9, 50.

Negative integer: a whole number less than zero,
not a fraction or a decimal.
For example, −1, −5, −150.

Rational number: any number that can be written as
a fraction or a ratio.

For example −5 can be written as
−5
1
— and

2.15 can be written as

215
100
—.

77

w

 1. Explain the difference between a use case and
a test case.

 2. NASA is testing a program by seeing if an astronaut can
use the program to successfully complete all the steps of
a mission from rocket launch to orbiting Earth. Is this
a use case test or a test case?

 3. NASA is testing a small part of the launch program-
the part that controls the engines-to see if the program
runs correctly even with different inputs. Is this
a use case test or a test case?

 4. You are a defensive programmer if:
A. You think testing is a waste of time
B. Your program will run even if things go wrong
C. Your program protects against a virus
D. All of the above

78

 5. For a program that asks users to input the location of
graffiti so that volunteers can clean it up, which of the
following are test cases? (Choose all that apply.)
A. Can the user create an account and post a location

where graffiti is found?
B. What happens if the user types the city name into

the zip code text box?
C. What happens if the user types a negative number

into the zip code text box?
D. Can a user take a picture of the graffiti, upload it,

and add it to a post?

 6. Why is testing different kinds of input important in
case testing?

 7. Use and test cases are used to find in your
program.

 8. Which of the following would be the best set of numbers
to include in a test case for a calculator program?
A. 1, 2, 3, 4
B.	−2,	−4,	−6,	−8
C.	0.4,	0.5,	0.2,	0.6
D.	−2,	0,	0.4,	16	

answers 79

 1. Use cases are the broad tests that determine if a
user is able to complete a general task, while test
cases are specific tests that use various types of input.

 2. Use case

 3. Test case

 4. B

 5. B, C

 6. It ’s important because you want to make sure your
program runs no matter what the user inputs. For
example, if your program expects users to type only
words in a text box, something may go wrong if the user
inputs numbers or hashtags or something else. You would
need to make sure that the incorrect input doesn’t break
the program.

 7. Errors (bugs)

 8. D

80

Chapter 8
DOCUMENTING

 DOCUMENTATION is information about a program‘s code.
There are two main types of documentation: comments and
README files.

COMMENTS
All programming languages have a way to add comments to
the code. Comments are not part of the program; they are
skipped when the program is run and can’t be seen by the
user. Comments are messages writ ten by the programmer
about the program’s code. They can be explanations about
what a chunk of code does, reminders about things to add
or change in the code, or questions to other programmers
who will look at the code.

Example:

Add a countdown clock at the top of the screen.

81

Commenting on code helps you remember what each section
does. This is helpful for large programs because you won’t
remember what every line of code was writ ten to do.
Comments also are helpful for short programs because you
might want to look at the code long after you finish writing it.

Sometimes you’ll want to reuse code from another program,
or code you or someone else wrote. Comments help you quickly
find the portion of code you want to reuse. For example, if you
were making a game, instead of creating the code to move
characters around on your own, you could copy a similar chunk
of code from another program. You could write a comment so
that you know which chunk of code this is in your program.

Comments are also used to
help debug a program. Because
comments are not read when the
program is run, COMMENTING
 OUT a section of code is an easy
way to make the computer skip
lines of code (that may contain a
bug) without deleting them.

Comments can also be helpful in debugging by adding test
lines of code that you comment out when you are done
testing it.

COMMENTING
OUT

Marking sections
of code as a comment

so that it will not be run
with the rest of the code

82

PLEASE
READ ME.

TXT

Comments can also be notes to yourself as you code.

For example, you could leave short notes as reminders to
yourself like:

#BUG or #FIXME-a known bug that you want to come
back to.

#TODO-a note about what code you still need to write but
need to come back to later.

README
A README file (usually typed in
all caps to get your attention)
gives information about a program,
including which files are included,
how to install it, how to use it, credits
and attribution, or known bugs.

A README file can be
writ ten for the user, other
programmers, or both. Usually
only one README file is used
per program, and it usually is
a PLAIN TEXT FILE .

PLAIN TEXT FILE
A text document that

has no formatting
(like bold type, indents,
and paragraph spacing);

just words and punctuation

83

FASCINATING . . .

READ
ME

TXT

Although README files can include user information, a user
guide is a more common way to help users figure out how
to use a program. Usually user guides are only created for
large, complicated programs like Microsoft Word or Excel.

84

READING A
USER GUIDE

= SMART
IDEA

85

w

 1. What are two types of documentation you can make to
help others understand your program?

 2. Which type of documentation helps you remember what
small chunks of code are supposed to do?

 3. Why is commenting out a line of code helpful in
debugging?

 4. Why are comments useful to you and other
programmers?

 5. Which of these are reasons to use documentation?
(Choose all that apply.)
A. Makes it easier to find sections of code you want
B. Makes it easier to collaborate
C. You can write notes to yourself while programming
D. Helps you find bugs
E. Gives credit
F. Explains how to use a program

86

 6. If you wanted to add a note in your code as a reminder
to come back and fix an error, you could add the
comment .

 7. Which of the following would you use to help a user
install your program: a README file or a comment in
your code?

 8. What is a user guide?

answers 87

 1. Comments and README files

 2. Comments

 3. It helps you prevent small chunks of the program from
running without having to delete them from the file.

 4. If you are working on a project with others, it ’s much
easier to read a comment explaining a chunk of code
than it is to try to read the code and interpret what
it does.

 5. A, B, C, D, E, F (All the reasons are correct.)

 6. #BUG or #FIXME

 7. README file

 8. A user guide is a document that helps the user learn the
functionality of a program.

88

Chapter 9
INCORPORATING

FEEDBACK

USER-CENTERED DESIGN
Users decide whether or not a program is good. Their
opinions will be based on how easy the program is to use
and whether it does what it ’s supposed to do.

 USER-CENTERED DESIGN is a process for creating
a program that considers users’ wants and needs at every
stage of development. To make a program work easily for
as many users as possible, you should ask different kinds
of users for their opinion on your program.

Incorporating feedback means using the information
you gathered from users to revise your design.

89

COOKIE S

MARGARET,
 CAN YOU COME
 HELP ME WITH

THIS NEW
SNAP PING AP P?

I CAN'T GET
THE VIDEOS TO

COME BACK

NEWB!

When creating a user-centered design, you should focus on
several things:

USABILITY-
Is it easy to
figure out
and use?

ACCESSIBILITY-Can people
with different abilities use it?

CONTENT-Does your
program make sense to the
target audience?

people for whom the
program is designed

90

SERIOUSLY,
 MORE TE STING?

COME CHECK OUT MY
GAME SO FAR.

COLLECTING
FEEDBACK
Before sharing a program
with the world, programmers
use ALPHA and BETA
testing to get feedback from
users. These users point out
bugs or issues in the program.

Alpha testing is the first round
of user testing, which is usually
done just before the program is
finished. Alpha testers are
friends or people you trust.
At this point your code isn’t
finished, so you should
expect them to find
plenty of bugs.
In a coding class,
alpha testing can mean
asking a classmate to
come over and check
your program, even if
it ’s only halfway done.

Alpha (a) and beta (b)
are the first

two letters of the
Greek alphabet.

91

HEY, MRS. ALVAREZ,
COULD YOU BETA TE ST

MY E SSAY BEFORE
I TURN IT IN?

Beta testing is the second round of user testing, which is
usually done after the program is finished. Beta testers
are a selected group of potential users.

FOR EXAMPLE, if you made a new app to help your
friends study for an upcoming math final, the beta testers
would be a group of your classmates in math class. Beta
testers should find fewer bugs than alpha testers.

Showing your program
to potential users helps
to identify flaws you
might have overlooked
before. Fixing these
flaws before sharing
your program with
everyone can help you
catch mistakes before
the program goes out
into the world.

92

w

 1. What is user-centered design?

 2. Which of the following is NOT a principle of
user-centered design?
A. Entertainment
B. Usability
C. Accessibility
D. Content

 3. What is feedback?

 4. How is alpha testing different from beta testing?

 5. Will an alpha or a beta tester be likely to find more bugs?

 6. What does it mean if a program is accessible, and why
does making accessible programs matter?

More questions 93

 7. You designed an app that tracks the amount of sleep you
get and its quality. Who is your target audience?
A. People who shop at Target
B. Tired people
C. Neurosurgeons
D. The programmer

 8. What might happen if you share a program with the
world before testing it?

94

 1. User-centered design is creating a program
based on what users want.

 2. A

 3. Feedback is the information gathered from users testing
your program.

 4. Alpha testing is the first round of testing, and it ’s done
with a small group of trusted people. Beta testing is the
second round of tests, and it ’s done with a group of
users from your target audience.

 5. Alpha testers will probably find more bugs because they
are the first users to test the program, and the project
may not even be complete yet. By the time beta testers
see the program, hopefully most of the bugs are fixed.

 6. A program is accessible if people with different abilities
can use it successfully. As a programmer, you want to
make sure that you are not excluding any group of
people from using your work, based on their abilities.

More answers 95

 7. B

 8. While your program might be perfect, it ’s likely that
there are bugs that users will find or adjustments
they will suggest.

96

STILL
TY PING.

Chapter 10
COLLABORATING

WORKING ON A TEAM
Collaborating, or working with others, on programming
projects is helpful because different people have different
strengths. Having several people work together on a large
program (instructions that tell a computer what to do) can
help the project finish faster. It can also reduce the burden
on the programmer.

The Space Shuttle
ran on 400,000 lines
of code. New high-
end cars run on
100 million lines of
code. Facebook is
made up of around
60	million	lines	of	code.	To	write	millions	of	lines	of	code	
by yourself would take more than a lifetime.

97

Collaborating on a project by dividing up the work and
focusing on your strengths will help you build more efficient
programs more quickly.

Tips to help members of a team work well together:

Set clear expectations. Make sure everyone
knows exactly what they are supposed to do
to contribute to the project. Don’t leave out
any parts of the project.

Focus on your strengths. Divide up tasks
so that each person is assigned a task that
they will enjoy doing and will most likely be
good at.

Set realistic timelines. Give yourselves time to
complete the work, but also push yourselves
to work hard and finish the project.

98

DESIGN
FOR THE AP P

CODE
FOR THE AP P

ARTWORK
FOR THE AP P

Give equal workloads. Although each team
member will be doing different tasks, make sure
the work is divided equally so no one feels that
they are stuck doing all the work.

Create clear roles. Decide who should be the note
taker, the tester, the debugger, or any other role
you might need. Clear roles will help you keep on
track and focus on your own tasks.

99

DRIV ERNAVIGATOR

PAIR PROGRAMMING
When projects are really small, like those you might do
in a class, programming with a large team may be too
much. PAIR PROGRAMMING is a strategy where two
people work at the same computer to complete a project.
Programmers use this strategy because it helps them
work faster and make fewer errors.

In pair programming, each coder has a specific role. One
person is the DRIVER , and the other is the NAVIGATOR .
The driver is in control of the keyboard. They are in charge
of typing in the code and
double-checking their
work. The navigator
is in charge of telling
the driver what
code should be
writ ten and for
catching bugs
while working.

Both the driver and the navigator should communicate
with each other while coding. Pairs should rotate roles
often so that each person has a chance to drive and
navigate.

100

THIS PART
IS MINE.

GETTING HELP FROM
THE COMMUNITY
Most programmers spend a lot of their time searching
for solutions to their programming problems. When you’re
making a program you can use many resources to help you
finish the project. Even experienced programmers ask other
programmers for help.

When you’re programming, you should look for opportunities
to build on the work of others. This does NOT mean it ’s
okay to copy someone else’s code and say that it ’s your
own. Instead, you should use someone else’s program for
ideas, or copy only a small part of the code.

You should always give ATTRIBUTION by making sure
that the programmer gets credit for their work. If your
program or part of your program was writ ten by you but
inspired by someone else, give them
credit in a comment or README
file. If you want to copy part
of someone else’s program,
first ask the author if it ’s
okay or look for copyright
permissions. Then, make
it clear which part is
their code and which

101

part is yours. When you’re copying code, it ’s a good idea to
include attribution in both a comment and a README file.

Here’s an example of what giving attribution looks like:

When you give attribution, you are showing that you are
grateful for someone else’s hard work and you are helping
to create a community of sharing. Also, giving attribution
isn’t just a nice thing to do-in some cases, it ’s also the law!

WHOA! DID YOU
MAKE A PROGRAM THAT
DOES YOUR HOMEWORK

FOR YOU?

MIN D IF I COPY
THAT CODE?

I used the example project from @the_coding_master, and I
modified it to use more light effects, added a turtle costume

to the whole thing, and made it play the music from @music_
lover. Credit to @gamer_pro for the game play inspiration!

I'LL GIVE YOU
ATTRIBUTION.

102

USING LIBRARIES
 LIBRARIES (also known as modules or extensions) give you
access to helpful PREMADE FUNCTIONS . For example,
if you were making a game, you could type hundreds of
lines of code to simulate a character jumping around and
interacting with another character on the screen. Or, you
could use a library that already has all the jumping-and-
interacting-with-characters
code built in. Some libraries
require that you give attribution
somewhere in your program,
sometimes as a comment in
your code.

It ’s always a good idea to look for help or a library
that can support your project.

PARAPHRASE
Using someone else’s idea but
saying it in your own words

Giving attribution in programming is like CITING
quotations or PARAPHRASING other authors when

you write a report in English class.

PREMADE
FUNCTIONS
Ready-made lines

of code for a
specific action

CITE
Referencing the source

103

THIS ISN ’T
THE L IBRARY

I WAS
THINK ING OF.

104

w

 1. Name two benefits of programming as a team.

 2. True or false: Most programmers never need to ask
for help.

 3. It ’s okay to use someone else’s code as long as you do
what two things?

 4. If you don’t copy someone’s code exactly, but use it as
inspiration, do you still need to give credit? Yes/no.

 5. As the driver, how can having a navigator help you?

 6. Why would it be important to switch roles often when
pair programming?

 7. Why would using a physics library (one that has
functions that can make your characters and objects
look like they are realistically interacting or moving)
be helpful to a game maker?

More questions 105

 8. How would you feel if someone used your code without
permission, didn’t give attribution, and claimed the code
as their own?

 9. Giving attribution is:
(Choose all that are true.)
A. A nice thing to do
B. The law
C. A show of gratitude
D. A way to promote a community where people share

106

 1. Any two of the following are good benefits:
• You can accomplish bigger tasks.
• You have a variety of strengths to draw from.
• You have extra sets of eyes to help avoid and
catch mistakes.

• You can learn from others.

 2. False

 3. Ask or look for permission and give attribution.

 4. Yes

 5. Having someone who can step back and focus on the big
picture can help the driver focus on coding and possibly
make fewer errors.

 6. Switching roles makes sure both partners have an
opportunity to step back and think about the big picture
as well as hunt for bugs from different perspectives.

 7. Using libraries helps save time and can prevent errors.
With a physics library, a game maker can spend less
time coding the physics of the characters and more time
on the rest of the game.

More answers 107

 8. Many programmers would feel sad or even angry about
someone else claiming authorship of their code.

 9. A, B, C, D

108

Unit

4
Algorithms and
Programming

109109

Chapter 11
USING

ALGORITHMS
ALGORITHMS
Both humans and computers use algorithms. Algorithms
are processes or steps that can be followed. A recipe is
an example of an
algorithm that both
humans and some
computers can use.

Algorithms give
clear instructions
for repeating tasks.
Different algorithms
could be used to
complete the same task. For example, there are different
ways to divide two numbers using long division or by doing
repeated subtraction. Both ways give you the same result,
110

Inefficient
(the opposite of efficient)

Efficient

but one way may be better. In computer science, we are
always looking for better algorithms.

Better algorithms are faster, simpler, or more efficient.

Algorithms are useful because they can
provide better ways to complete tasks.

Studying Algorithms
Developing algorithms is its own branch of computer science
and is very similar to the study of mathematics. For example,
mathematicians and computer scientists have been studying

111

The Traveling Salesperson problem asks, “Given a list of
cities and the distances between each pair of cities,

what is the shortest possible route that a salesperson
can take to visit each city and return home?”

the TRAVELING SALESPERSON PROBLEM for almost
100 years.

The goal of the Traveling Salesperson problem is to develop
the most efficient algorithm that can determine the shortest
path that a traveling salesperson should take. The problem
can be applied to real life. For example, a delivery truck
dispatcher uses a shortest-route algorithm to determine all
their deliveries for the day. The algorithm helps the trucking
company save time and money.

PROGRAMS
The job of a computer scientist is to come up with a solution
to a problem, turn the solution into an algorithm, and then
code the algorithm into a program so that it can be read by a
computer. A program is an algorithm that has been translated
(coded) into instructions for a computer.

Algorithms are often writ ten out in a way that most people
can understand. It ’s less likely that most people can read

112

a computer program and understand it, because it uses
a combination of numbers, letters, and symbols in an
arrangement we are not used to-but a computer would
know just what it says.

Programmers give very specific instructions to computers
using PROGRAMMING LANGUAGES . Programming
languages use combinations of numbers, words, symbols, and
formatting to tell a computer what to do in a way that it
can understand.

FOR EXAMPLE: Suppose you wanted to find out if today
is your friend's birthday. You could write this algorithm or
program.

ALGORITHM PROGRAM (PYTHON)
1 . Look up today’s date.

2. Ask a friend when

 their birthday is.

3. Determine if today is

your friend’s birthday.

#Import datetime library

from datetime import *

#Get Today's Date

today = date.today()

#Get User’s Birthday

dob_str = input(“What is your

Date of Birth? dd/mm/yyyy")

113

When you start learning
to program, it’s traditional

to begin by writing a
 simple program that makes

a computer display,
“Hello, World!”

HEY

ALGORITHM PROGRAM (PYTHON)

4. If today is your friend’s

birthday, say “Happy

Birthday!” Otherwise, tell

them, “Today is not your

birthday.”

#Convert user input into a date

dob_data = dob_str.split ("/")

dobDay = int(dob_data[0])

dobMonth = int(dob_data[1])

dobYear = int(dob_data[2])

dob = date(dobYear,dobMonth,dobDay)

#Determine if today is the

user’s birthday

thisYear = today.year

nextBirthday =

date(thisYear,dobMonth,dobDay)

if today == nextBirthday:
print("Happy Birthday!")

else:
print("Today is not your birthday.")

114

EARLY DAYS OF PROGRAMMING
Programming a computer is also called coding. Coding can
be traced back to the nineteenth century.

Ada Lovelace is considered one of
THE FIRST PROGRAMMERS. In 1843,
Lovelace wrote an algorithm for
a machine called the ANALYTICAL
ENGINE, which was a mechanical
computer.

The Analytical Engine
was designed by

CHARLES BABBAGE.
Instead of running on
electricity like modern

computers, this computer
used gears and a steam
engine. It was used to
count and solve simple

mathematical problems.

Augusta Ada King,
Countess of Lovelace

The Analytical Engine

115

punch cards

The Analytical Engine was designed
to run simple programs made using
punch cards. Each punch card would
have holes in it that the machine
would read as instructions. The
punch cards would be used to
program the computer.

Lovelace believed that the machine could be given
instructions to carry out other tasks. She understood that
it could be programmed. Lovelace was the first person to
recognize the potential of the Analytical Engine beyond
calculating.

116

w

 1. Explain the difference between an algorithm and
a program.

 2. Which of the following is NOT an algorithm?
A. Steps to make a burrito
B. Instructions on how to French braid
C. A how-to guide on building a model airplane
D. An anonymous love note to your crush

 3. Why are the best algorithms efficient? Why are
computer scientists always looking for more efficient
algorithms?

 4. Choose the algorithms below that are also programs.
A. Instructions on how to play an instrument
B. Microsoft Word
C. Snapchat
D. A list of steps for building a drone

 5. True or false: Different algorithms can be made to
complete the same task in different ways.

 6. What kind of languages do computers understand?

More questions 117

 7. Why do algorithms need to be writ ten in a different
way for computers to understand them?

 8. True or false: Ada Lovelace wrote the first computer
program on an Apple computer.

 9. Who designed the Analytical Engine?

 10. What kind of work was the Analytical Engine designed
to do?

 11. Why was Ada Lovelace’s work ahead of her time?

118

 1. An algorithm is a set of instructions to complete
a task, and a program is a set of instructions
that can be understood by a computer.

 2. D

 3. Efficient algorithms run faster and take up less
storage space.

 4. B, C

 5. True

 6. Programming languages

More answers 119

 7. Computers need specific instructions and only
understand programming languages.

 8. False. Ada Lovelace wrote the first program, but it
was for the Analytical Engine.

 9. Charles Babbage

 10. The Analytical Engine was designed to perform math
functions, like a calculator.

 11. She saw potential that no one else saw to program
machines for multiple purposes beyond mathematical
calculations.

120

MOBILE
APPLICATIONS

Types of software
designed to run on
mobile devices like

cell phones and tablets

Chapter 12
PROGRAMMING
LANGUAGES

There are hundreds of programming languages, and
programmers use different languages for different types
of tasks. Languages like JavaScript, PHP, and Python
are used to make WEB PAGES -documents that can be
displayed in a web browser (like Chrome, Safari, or Firefox).
A collection of web pages is called a WEBSITE .

 MOBILE APPLICATIONS are
made with the programming
languages Swift, Java, C,
and others.

121

THIS TIME YOU GET
TO BE THE BACK HALF.

USING PROGRAMMING
LANGUAGES
Since each programming language has different strengths
(for example, some are faster, others are easier to write, or
some show graphics better), programmers may use several
languages for large projects. For example:

Facebook uses Python, JavaScript, PHP, and others.

YouTube uses Python, JavaScript, C++, and others.

Twitter uses JavaScript, C++, Ruby, and others.

All three websites use JavaScript. That ’s because
JavaScript (along with HTML and CSS) is primarily a
FRONT-END LANGUAGE, which means it is used to make
the part of a website that can be viewed on a screen.

Websites like Facebook, YouTube,
and Twit ter also store tons of
information (posts, comments,
profile pictures, videos, etc.).
This means they need another
type of programming language
(a BACK-END type) to organize
and connect all the extra
information to the front end.
122

Different back-end languages are used for different
reasons. For example, C++ runs (follows instructions) faster
than other programming languages but is harder to write.
So a company might start by writing their product in an
easier language like Python and then go back and replace
parts of the product with C++ to increase the speed at which
it processes information.

No computer programmer knows every programming
language, just like no one knows every spoken language.

However, it is useful to know a few programming languages so
that, for example, you can combine a language that is great
for graphics with a language that is great for processing large
amounts of code.

HOW COMPUTERS READ CODE

Binary
Computers process information using electrical circuits
that can turn on and off. Computer scientists use
the digits 1 and 0 to stand for
on and off. The 1s and 0s
are a type of encoding called

CODE LANGUAGE A COMPUTER
UNDERSTANDS=

A path or col lection
of paths through which
electricity is carried

123

 BINARY , or MACHINE CODE .
A binary digit can be either 0 or 1.

In binary, 1s and 0s are often used,
but you can also represent binary
with “On” and “Off” or “True” and
“False.” All words, numbers, letters,
symbols, images, videos, programs,
emojis, and music can be
represented in binary.

The CPU of a computer can only read instructions writ ten
in machine code. So, after a human enters a program into
a computer, a computer program
then turns it into binary machine
code. The process of translating
(changing) a program into machine
code is called COMPILING .

1 = ON
0 = OFF

BINARY
Binary is how

computers talk and
represent information.

COMPILING
Translating a

programming language
into machine code

MACHINE CODE
The most basic language that all

programming languages are turned
into before a computer runs them

124

print("Hello, World!")
PROGRAM

COMPILER

MACHINE CODE
01000101

I CAN
READ
THIS!

No matter how many different programming languages are
used to write the phrase “Hello, World!”, the machine code
for each version looks the same.

A compiler changes instructions from the programming language
into machine code. Before the first compiler was invented,

programmers had to write their programs in a language close to
machine code. In 1952, GRACE HOPPER wrote the first compiler

program. Her compiler helped programmers spend less time
writing out machine code and more time creating programs.

BINARY MACHINE
CODE=

INPUT:
Algorithm ➜ Code

PROCESSING

125

HMM. I WON DER WHY
WE COUNT IN BASE 10?

I'LL GIVE YOU
TEN GUESSE S.

Representing Numbers Using Binary
Binary is another way of using numbers to count or to
represent numbers. Binary is sometimes referred to as
BASE 2 because it uses two digits (0 and 1), while our usual
way of counting is called BASE 10 because it uses ten digits.

In base 10, each place is ten times the value of the place to
its right. As numbers get larger, we add digits to the next
place value to the left.

The bi in binary means two. Even though binary
uses only two digits, it can still be used to

represent every number value that base 10 can.

126

FOR EXAMPLE, the number 237 means two hundred
thirty-seven. Each digit corresponds to a value that is
based on the place of the digit in the number.

In binary, numbers increase in value 2 times as we double
(multiply by 2) the value of each new place. From right to left,
digits in base 2 (binary) have the place values of 1, 2, 4, 8, 16,
32, 64, and so on, doubling each time.

 Binary place values: From right to left, each place is double
the value of the previous one.

To represent the number 1 in binary, write “1” in the ones place.

128s
place

64s
place

32s
place

16s
place

8s
place

4s
place

2s
place

1s
place

1

100s 10s 1s

2 3 7

binary = 2

127

There is no “2” digit in binary. To write the number 2, put a
0 in the ones placeholder, then move to the left and put a 1 in
the twos place.

128s
place

64s
place

32s
place

16s
place

8s
place

4s
place

2s
place

1s
place

1 0

0 is in the ones place, so its value is 0 × 1, or 0.

1 is in the twos place, so its value is 1 × 2, or 2.

When you add together the two values (0 + 2), you get 2.

You can use basic addition to figure out binary values.

VALUE 128s
place

64s
place

32s
place

16s
place

8s
place

4s
place

2s
place

1s
place

3 1 1 2 + 1

4 1 0 0 4 + 0

5 1 0 1 4 + 1

6 1 1 0 4 + 2

ON OFF

128

Another way to think of binary digits is how computers do:
as “on” or “off.”

FOR EXAMPLE, if we had 8 light bulbs lined up in a row
(to represent 8 place values in base 2), we could use them
to represent a number in binary by turning each light bulb
on or off.

You can represent 237 using a row of 8 light bulbs. Each
light bulb that is on represents 1, and each light bulb that is
off represents 0 value in the placeholder.

The sum of the place values for the light bulbs that are on
is 237.

128 + 64 + 32 + 8 + 4 + 1

1 1 0 1 0 111

129

Representing Letters in Binary
At first, computers were used just to make mathematical
calculations. Later, a way to represent letters and symbols
in binary was developed.

The AMERICAN STANDARD CODE FOR INFORMATION
INTERCHANGE (ASCII) assigned each letter of the alphabet
and symbol its own binary code. Each letter was assigned
a number, which was then encoded into binary.

For example, the capital letter A is assigned the number 65,
which in binary is writ ten 01000001.

Although the number 65 and the letter A share the exact
same binary code, the program tells the computer if it

should interpret the binary as letters or numbers.

130

WHAT
A CUTE
 L ITTLE

BIT!

Bits and Bytes
Terms like “16 gigabytes of memory”
or “1 terabyte hard drive” are
used when talking about computer
storage. These terms represent
quantities of binary digits.

A BIT is the smallest unit of
storage. It represents one digit
(1 or 0).

The next greater
measurement is a BYTE ,
which represents 8 bits. For
example, 01010101 is 1 byte.
(There are 8 digits.)

The largest number you can represent with
1 byte is 11111111, which in base 10 is 255.

A BYTE-SIZED FAMILY

That’s why RGB (color) values run from 0 to 255: because
those are the numbers you can represent with 1 byte.

Bit is short for
binary digit.

b = bit
B= byte

131

Larger quantities of bytes can be represented using
a prefix:

Kilobyte (KB)-about one thousand bytes (A 5-page
Word document is around 100 KB.)

Megabyte (MB)-about one million bytes (Audio files are
several MB.)

Gigabyte (GB)-about one billion bytes (HD movies are
a few GB.)

Terabyte (TB)-about one trillion bytes
(Some new hard drives hold around
1-3 TB. The Hubble Space Telescope
sends 10 TB of data to Earth
every year.)

The Hubble Space Telescope was the first major
telescope to be placed in space. Launched into

Earth’s orbit in 1990, it is one of the largest
telescopes ever made. Its purpose is to allow

scientists to observe distant stars and planets.

132

CREATING ALGORITHMS
Before typing out a program, programmers first come up
with the algorithm, or list of steps, that will be used in
the code. They often use PSEUDOCODE (pronounced
“SOO-doe”) and FLOWCHARTS
to design or plan algorithms
before they begin programming.

Pseudocode
Pseudocode is writ ten in a style or format that ’s similar
to the programming language a programmer is going to
use. There are no rules on how to write pseudocode, but it ’s
meant to be read by humans, not a computer.

Most programmers format their pseudocode so that each
line represents a line of real code in their final program.
The pseudocode doesn’t have to
be perfect; it should just give an
idea of what the final program
may look like.

FLOWCHART
A diagram that outlines
the steps in a process

Coding without a plan
is like building a house

without a blueprint.

133

Flowcharts
Flowcharts help programmers visualize the steps in an
algorithm. Just like making an outline before writing an
essay, flowcharts help organize ideas, and they use specific
symbols to represent different parts of an algorithm.

Each symbol in a flowchart has a meaning.

NAME

Oval

Parallelogram

Rectangle

Diamond

Hybrid

Flow line

MEANING IN FLOWCHART

The beginning or end of the program

An input operation

A process to be carried out
(addition, subtraction, division, etc.)

A decision (or branch) to be made; the
program should continue along one of
the two routes

An output operation

The direction of f low in the program

SYMBOL

134

If you wanted to write an algorithm to check if today is
your friend’s birthday, the flowchart might look like this:

It might look like this in pseudocode:
Look up today’s date.

If the month and day of your friend’s birthdate
are the same as today’s date:

Then, say “Don’t forget to wish your friend
a Happy Birthday today!”
Else, say “No reminders today.”

Is today’s month and
day the same as your

friend’s birthday?

Look up today’s date.

true false

Say, “Don’t forget to
wish your friend a

Happy Birthday today!”

Say,
“No reminders

today.”

135

w

 1. What is a programming language?

 2. For computers to be able to read and run a program,
a is needed to translate the program into
machine code.

 3. What do the 0 and 1 in machine code represent?

 4. Why are there different programming languages?

 5. Why might learning one programming language make it
easier to learn another?

 6. How many bits are in a byte?

 7. If a computer compiled two programs that both wrote
“Hello, World!”, would the machine code for “Hello,
World!” look different?

136

 8. Which is bigger: a kilobyte or a gigabyte?

 9. How do you write the number 2 in binary? What number
does 101 represent in binary?

 10. Name two good ways to plan out a program before
you code it.

answers 137

 1. A programming language is a language used
to give specific instructions to computers.

 2. Compiler

 3. Off and on

 4. Each language has different strengths and can be used
to create different kinds of programs.

 5. Most programming languages use a lot of similar
structures.

 6. 8

 7. No, they would look the same.

 8. Gigabyte

 9. 10, 5

 10. Pseudocode or flowcharts

138

PROCESSING

Computer science focuses on using computers to create
solutions to problems.

 COMPUTATIONAL
 THINKING is the thought
process for creating solutions
that can be carried out by
a computer.

Chapter 13
COMPUTATIONAL

THINKING

139

FOR EXAMPLE, if your problem is that you need to write
a book report, a common solution is to read the book, plan
out the essay, then write about what you read.

A way you might solve the same problem using computational
thinking might be to collect data on the number of times
each character talks to another and plot the information on
a graph. You might even develop a program that analyzes
the data for you. The graph would give you data-driven
evidence of the relationships between the characters in the
story. The output of your program and data could be used
to tell you what to write in your essay.

An extreme example may be to program an artificial
intelligence (AI) program that can understand
natural language, analyze the book, and write the
essay for you. While this example might not help you
meet your goal of learning about the book, it shows
how far computational thinking can go.

The way people
speak to each other

140

There are four major ideas in computational thinking:

1. Decomposition: Breaking a problem down into
simple parts

2. Pattern Recognition: Identifying what different
problems have in common

3. Abstraction: Separating details that matter from
details that are not important

4. Algorithm Design: Creating a solution with simple
steps that anyone can follow

DECOMPOSITION
Before beginning work on a solution, you need to understand
all the parts of the problem. Once you understand each part,
you can break the problem into smaller tasks. Decomposition
makes problems more manageable to solve.

In computer science, artificial intelligence (AI) is a powerful way
of programming machines and computers so they can learn from
large amounts of data to improve the way they work. This type of
computing allows computer programs to make predictions and

decisions beyond those that they are directly programmed to make.

141

FOR EXAMPLE, when writing a book report, you would
break the assignment down into smaller, simpler tasks:

1. Read the book.

2. Identify the main characters.

3. Identify the theme.

4. Analyze tone, plot, and character relationships.

5. Write about the tone, plot, and characters in the book.

Decomposition helps to identify where to start and the tasks
that need to be completed.

PATTERN RECOGNITION
Patterns are events that are repeated. Recognizing where you
have created solutions to similar problems before will help you
create solutions that can be used to complete different tasks.

FOR EXAMPLE, if you’ve used a format or a template for
writing book report outlines in the past, you can include that
same process in your program. A book report outline may be
different, but the process of writing the report is the same.

142

ABSTRACTION
Abstraction is focusing on the important ideas of a problem
and ignoring details that will not help you find a solution.

FOR EXAMPLE, focusing on the important parts of the
book (like the relationships between major characters,
the setting, or the theme), and not on less important
information (like conversations between minor characters
or daily events), helps you create a program that is not
specific to one book. The program would work with books
that have different plots, but include major characters,
settings, and themes.

ALGORITHM DESIGN
Algorithm design means writing out the steps you need to
follow so that you can get the same solution every time.
When a solution is carried out by an algorithm, the solution
becomes reusable.

143

Learning to Code
PROGRESS CHART

KNOWLEDGE

SK
IL

LS

144

w

answers

 1. What is computational thinking?

 2. Why is creating a solution that can be reused
an important part of computational thinking?

 3. Do programmers use computational thinking while
creating programs?

 4. Which one of the four parts of computational thinking
talks about focusing on the main idea?

 5. Explain what decomposition is.

 6. Which of the four parts of computational thinking is
considered by most to be the key idea?

145

 1. A way to problem solve by developing algorithms
for a solution that can be programmed into a
computer language

 2. It makes the computer more efficient. The computer can
reuse information/solutions it already has.

 3. Yes. From planning through testing, computational
thinking is used.

 4. Abstraction

 5. Decomposition is breaking down a large task into
smaller tasks.

 6. Algorithm design

146

I'M A FREE
SPIRIT K IN D OF
PROGRAMMER.

Unit

5
Universal

Programming
Principles

147147

Chapter 14
VARIABLES

In math, a VARIABLE is a letter or symbol used in place of
a quantity we don’t know yet. The variable is a placeholder
for a number in a mathematical expression or equation. In
computer programming, a variable is a container for storing
a value. The variable is stored in the computer’s memory and
can be used or changed throughout the program. Variables
act as stand-ins or placeholders for values that are stored
in the computer.

The name of the variable is the IDENTIFIER . The information
that the variable contains is the VALUE . Variable values
can be text, numbers, or other types of data.

For example, the score in a computer game is the variable.
If the game starts out at
zero and the player earns one
point, here’s how the variable
would work:

Identifier

Value

Variable

12

SCORE

148

The program finds where the variable value for “score” is
stored, then replaces the previous value of 0 with the new
value: 1.

ASSIGNING AND
NAMING VARIABLES

To create a variable within a
program, you have to DECLARE
it. When you declare a variable,
you’re telling the computer to
create a space for information
and to assign that space a name. It ’s like organizing a
bunch of toys using boxes on a shelf. For each type of toy,
you pick a box, label it, and put the toys inside the box.

DECLARE
To create a variable
within a program by

giving it a name

149

To assign a value to a variable, use the equal sign (=). The
identifier goes on the left of the equal sign, and the value
goes on the right. You can assign a new value to your
variable anytime you want.

The = symbol is called
an ASSIGNMENT
OPERATOR in
programming because it ’s
used to assign a value to
a variable.

ASSIGNMENT
OPERATOR

The = symbol, which assigns
values to variables

I DECLARE THIS
BOX TO BE FOR

BASEBALL
CAR DS!

BASEBALL
CAR DS! CLEATS

NEW
HATS

OLD
HATS

FOAM
HAN DS

(OVERSIZED)

FOAM
HAN DS

(UNDERSIZED)

150

In programming, the = sign doesn’t mean “equals”; it means
“is assigned.”

name = "Jason" means that the variable name is assigned
the value Jason.

There are specific rules for how you can identify or name
variables. Different programming languages may have
different rules, but the common rules are:

Variable names should be short and should clearly
describe what the variable represents.

This works: score

 This doesn‘t work: this_variable_represents_
player_1_score

Variables must begin with a letter of the alphabet.

 This works: firstPlayer

This doesn‘t work: 1stPlayer

Too long!

151

Variables can contain letters, numbers, and some
characters like an underscore. No reserved characters (like
#, @, &, %) or spaces are allowed. When you want to use
more than one word to name a variable, you can use the
underscore (_) symbol instead of a space or use uppercase
letters to start each word with no space between words.

 These work: first_player or firstPlayer or
FirstPlayer

 These don’t work: first player or first#player
or first@player

Some words already have special meanings within a
program and cannot be used as identifiers. These words
depend on which programming language you are using.

FOR EXAMPLE, Python uses the word “return” to produce
a value of an expression or function. Here are some
reserved words (words you can't use for naming) in Python:

PYTHON RESERVED WORDS
 true for false import and
 not if or else return
 none while elif

152

“ ”

TYPES OF INFORMATION
VARIABLES CAN STORE
Variables can store many different types of information
(called data types).

String Values
 STRING variables can store
any kind of character (including
letters, numbers, symbols, and
special characters). For example, in
a quiz program, we could use string
variables to store questions and
answers in the program.

A string is always placed inside
quotation marks.

EXAMPLES:

name = "Alan Turing"
fruit_salad = "Yummy yummy"

String

Variable name (Identifier)

I CAN
STORE

ANYTHING.

153

Numeric Values
Variables can also store numeric values, including integers
(positive and negative whole numbers) or floating point
numbers (numbers with a decimal point). For example, we can
use a variable to store the amount of time it takes a player
to complete a level in a game.

Do not use quotation marks with numeric values.

EXAMPLES:

age = 13

xp = 245

score = 23.5

x_coordinate = -300.76

XP = EXPERIENCE POINTS
Used to show a player’s character’s

advancement in a video game

HIGH
SCORE!

Numeric value

Variable name (Identifier)

154

You can use algebraic expressions when assigning values to
variables. For example, we can use a variable to store the
experience points a player has and add 5 points to the value
every time they reach a goal (score = x + 5).

We could also use math to add points to a score variable.

FOR EXAMPLE, to add 2 points to a value we can use:

score = 5 + 2

Because “score” is an integer variable, it has the value of 7,
the sum of the integer values.

But if you made “score” store a string by putting 5 + 2 inside
quotation marks like this:

score = "5 + 2"

Then “score” is storing the string value of "5 + 2", the actual
content within the quotes.

155

Boolean Values
Sometimes programmers need to know if something is true
or false. For example, in a game they want to know if the
game is over or if it is still
going. Or, did the user get a
quiz question right or wrong?
When the information we want
to store is true or false (can
also be “yes” or “no”), then we
can use another data type
called BOOLEAN (pronounced
“BOO-lee-un”). Boolean variables
can only have two possible
values: true or false.

FOR EXAMPLE:

I_like_licorice = False

powerUp = True

gameOver = True

Variable name (Identifier)

Boolean
value

Boolean variables
are named after the

English mathematician
George Boolean.

TRUE!

156

Lists
An ARRAY variable stores an entire list of information. This
is useful when you have multiple pieces of information that
you want to store in one place. For example, in a Hangman
game program you could use a list (array) to store all the
letters the player guesses. Each time the player guesses a
new letter, it would be added to the end of the list.

157

w

 1. In computer science, variables:
A. are numbers like pi
B. represent parts of an experiment that are measured

or tested
C. are placeholders for storing information
D. are unchangeable

 2. What is the difference between a variable’s identifier
and its value?

 3. Explain what it means to declare a variable.

 4. Which of the following variables are string types?
(There may be more than one.)
A. character = “Dr.”
B. vehicle = “Ambulance”
C. speed = 37
D. lives = “3”

158

 5. Assuming a player’s score starts at 0 and increases
by 1 whenever they reach a goal, what data type would
be best used to store this value in a variable with the
identifier “score”?
A. Numeric
B. Array
C. Boolean
D. String

 6. What would be the value of “var_x” after this statement
runs: var_x = 6 - 4
A. 10
B. 2
C. “6 - 4”
D. undefined

 7. What would be the value of “var_x” after this statement
runs: var_x = “6 - 4”
A. 10
B. 2
C. “6 - 4”
D. undefined

More questions 159

 8. What is the assignment operator? What does it do?

 9. Label each kind of variable:
A. adaLovelace = “First programmer”
B. Hotel_Floor = “13”
C. Jersey = 18
D. QueenOf = “Sheba"
E. I_love_Mom = True

 10. Choose the variable names that do not follow the
naming rules. Explain why they are incorrect:
A. “teacherNames”
B. RangersScore
C. School Assignment
D. My_Absolute_Best_Ever_Summer_Vacation_Do_You_

Want_To_Hear_About_It
E. 6ofSpades

160

 1. C

 2. The identifier is the name of the variable and doesn’t
change, but the value is the data stored in the location
designated by the variable and can change often.

 3. When you declare a variable, you are telling the
computer to create a space for information and to
assign that space a name.

 4. A, B, D

 5. A

 6. B

 7. C

More answers 161

 8. The assignment operator is the = symbol. It is used to
assign values to variables.

 9. A. String
B. String
C. Integer
D. String
E. Boolean

 10. A. Starts and ends with a quotation mark
C. Has a space in the name
D. Is too long
E. Starts with a number

162

Chapter 15
CONDITIONAL
STATEMENTS

Conditional statements run a chunk of code only when a
certain condition is met. Conditional statements follow the
 IF . . . THEN FORMAT (if this, then that), and they allow
programs to be more flexible and powerful because they
can change depending on different conditions.

For example:

If you touch the enemy, then your character dies.

If you cross the finish line first, then you win.

If you score a goal, then your score increases by
one point.

163

Here’s what a basic conditional statement looks like:

If a specific thing happens
Then this other thing will happen

Here’s what a conditional statement could look like in a
quiz game:

If the player gives the correct answer
Then the player earns 100 points

An If . . . Then statement can be shown with a flowchart.
For example, in the quiz game where a correct answer earns
the player 100 points, a basic conditional statement might
look like this:

condition

consequence
(action)

IF

THEN
Correct answer

Get 100 points

164

You can have a different action happen if your condition is
false. To do that, use ELSE and then describe the different
action.

If a specific thing happens
Then this other thing will happen

Else
A different thing will happen

Here’s what a conditional statement with an “else”
consequence could look like in the quiz game:

If the player gives the correct answer
Then the player earns 100 points

Else
The player loses 50 points

An If . . . Then . . . Else statement
can also be shown with a
flowchart. For example:

Lose 50 points

IF

THENELSE
Correct answer

Get 100 points

165

You can combine multiple conditional statements to create
even more consequences. To do that, use ELSE IF in an
“if” statement.

Every “else if” added within a statement adds another
action, or consequence, that could happen. For example, here’s
how you can use an “else if” to get three consequences (three
different actions) to happen in a conditional statement:

If a specific thing happens
this other thing will happen

Else if another thing happens
A different thing will happen

Else
Yet another thing will happen

Here’s what an if statement with an else if consequence
and an else consequence looks like when calculating the
number of points a player should get depending on
the number of quiz questions they get correct:

166

If a player answers 10 questions correctly
Player is awarded 100 points

Else if player answers 5 or more questions correctly
Player is awarded 50 points

Else
Player is awarded 10 points

The flowchart would look like this:

10 correct
 answers

Get 100 points

Start

5 or more
correct answers

IF

THEN

ELSE IF

Get 50 points
THEN

ELSE

Get 10 points

167

COMPARISON OPERATORS
 COMPARISON OPERATORS (symbols used when
comparing values) are used in programming to form
Boolean expressions.

OPERATOR DESCRIPTION

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

== is equal to

!= is not equal to

Put a value on either side of a comparison operator to make
a Boolean expression.

168

FOR EXAMPLE:
10 > 5 True

10 < 5 False

5 >= 5 True

Comparison operators can be used in flowcharts. This
flowchart shows that if 10 is greater than 5, you‘ll say “yay,”
else you‘ll say “boo.” You’ll say “yay” because 10 > 5 is True.

10 <= 5 False

5 == 5 True

10 != 5 True

10 > 5

Say “boo.” Say “yay.”

yay

False True

“==” means equal to,
just like “=” in math.

169

You can use the == operator to compare two values. For
example, you could see if a game is over or not based on
the player reaching a score of 10 like this:

You could also use a Boolean variable by itself.

For example, in a race game, you could have a variable
called “boost.” The value of the variable is set to True if the
player earns a speed boost. The program uses a conditional
statement to check if boost is true (the player has earned a
boost). If so, then the program should increase the player’s
speed:

score == 10

Game in progress Game over,
player wins

False True

Boost earned?

Increase
player’s speed

True

170

COMPOUND CONDITIONALS
To check if multiple conditions are true in one conditional
statement, you can combine Boolean expressions within a
single conditional statement.

 COMPOUND CONDITIONALS are conditionals that
combine two or more Boolean expressions.

 LOGICAL OPERATORS are used to combine the expressions.
The most common logical operators are AND, OR, and NOT.

AND statements are true when both conditions are true.

 True AND True   →  True

For example, if a player finishes a race and if they finished
faster than anyone else, they are the first-place winner.

But if one or both of the conditions is false, then the AND
statement is false.

 True AND False   →  False

 False AND False →  False

171

FOR EXAMPLE, a game player sets a new speed run
record only if they beat the game AND finish in less time
than the current record.

If the player just finishes the game but doesn’t do it in less
time, or doesn’t finish the game at all (if both conditions
are not met), then the player does not set a new record.

The OR statement is true if at least one of the conditions
is true.

 False OR True   →  True

 True OR True   →  True

 False OR False   →  False

Beat game
AND

time < 9.58 minutes

Player set new
speed record

True

172

FOR EXAMPLE, in a ball game, if the player hits the
right wall OR if they hit the left wall, then they lose and
the game ends.

If either condition of hit ting either wall is met, then the
consequence (losing) becomes true.

The NOT statement doesn’t compare two conditions; instead,
it reverses the value from True to False and False to True.

NOT False   →  True

NOT True   →  False

Hit left wall
OR

Hit right wall

Game over

True

NOT switches the
expression to its

opposite.

173

FOR EXAMPLE, in a race game, we could have a
conditional that says: If Game Over is NOT true, then play
background music. In other words, play music as long as
the game is still going.

NESTED CONDITIONALS
A NESTED CONDITIONAL is one conditional inside of
another conditional. For example, in a virtual pet game you
could nest conditionals to determine the mood of the pet
based on different conditions like hunger and tiredness.
If the virtual pet is not awake, show the mood as asleep.

IT’S OP POSITE
DAY.

174

If the pet is awake, and if the pet’s hunger is below 50 percent,
then show a happy mood, else show a hungry mood.

So, if the pet is awake and its hunger level is at 75 percent,
then its mood will be hungry.

The flowchart looks like this:

Pet is awake

Mood = Asleep

True

Hunger > 50%

Mood = Happy Mood = Hungry

False

TrueFalse

175

w

 1. What is the difference between an “if” statement and
an “else if” statement?

 2. Assume a player scored 15 points by the time they
completed a game. Does the following evaluate to true
or false?
Player score > 20 AND Player completed game

 3. Assume an alien in a game has been aggravated and is
200 feet away from the player. Would the alien attack
the player based on the following conditional statement?

If alien is aggravated OR if alien is within 100 feet
Then attack player

 4. When would you use an “else if” statement versus
nested conditional statements?

 5. Circle the part of the pseudocode below that is the
conditional part of the statement:

If it is summer
Then display “Swimming Pool Open!”

176

 6. Assuming a player answered seven quiz questions
correctly, how many coins would they earn:

If player answers 10 questions correctly
Give player 10 coins

Else if player answers 8 or more answers correctly
Give player 4 coins

Else if player answers 5 or more answers correctly
Give player 1 coin

Else
Give player 0 coins

 7. Assume it is winter when an electronic display runs the
code below. What will the display say?

If it is summer
Then display “Swimming Pool Open!”

Else
Display “Swimming Pool Closed”

answers 177

 1. An “else if” statement is always nested within
an “if” statement and doesn’t exist on its own.
An “if” statement can exist without an “else if”
statement.

 2. False

 3. Yes, the alien would attack the player.

 4. If the conditions are dependent on each other, then an
“else if” statement should be used; otherwise a nested
conditional is appropriate.

 5. Circle the part of the pseudocode below that is the
condition part of the statement:

If it is summer
Then display “Swimming Pool Open!”

 6. The player earns 1 coin.

 7. The display will say “Swimming Pool Closed.”

178

Chapter 16

LOOPS
 LOOP STATEMENTS allow you to easily repeat a chunk
of code many times. For example, in a game with a bouncing
ball, it would be too much work to type out the code to make
the ball bounce up and down a thousand times (move up,
then fall down; move up, then fall down; move up, then fall
down . . .). Instead, you can put the repeated code in a loop:

Repeat 1,000 times
move up, then fall down

Loops not only save programmers time, they also make
programs shorter, which makes them easier for the
computer to run.

BOING!

179

When creating a loop, you should answer these questions:

* What do I want to repeat?

* When do I want the loop to stop repeating?

There are different types of loops:

A FOR LOOP is a type of loop that repeats itself a
set number of times. For loops are used when you know the
number of times you want to repeat something. For loops
and arrays are often used together.

FOR EXAMPLE, we could use a for loop to list all the
top-ten players of a game whose names are stored in
an array.

Top10 = [“player1”, “player2”, “player3”, “player4”, “player5”,
“player6”, “player7”, “player8”, “player9”, “player10”]

for item in Top10:

print(item)

an array containing the
names of the top-ten players

←begin the for loop, repeat the code in
the loop for each item in the Top10 list

the code that ’s repeated-print out
each name in the Top10 list

180

UHH . . .

ATTEMPT

99

A WHILE LOOP will run a chunk of code until a condition
is met. This is used when you don’t know the exact number
of times you want the loop to repeat and it depends on
another factor.

FOR EXAMPLE, in a quiz game you can repeatedly ask
a question until the user gets the correct answer:

while answer is not correct:
Ask the user, “What is the name of the current
Vice President of the United States?”

print “you are right!”

The quiz game would continue to ask
the question until the user got the right
answer, even if it took 100 attempts!

181

A NESTED LOOP is when one loop is put inside another
loop. Nested loops help create more complex repeating code.

FOR EXAMPLE, you could program background music for
a game using nested loops.

A nested loop can repeat a beat until the game is over. An
inner loop can repeat a bass drum sound 7 times before a
snare sound is played:

Repeat until the game is over:

Repeat 7 times:
Play bass drum sound

Play snare sound

Be careful when using nested loops, because it ’s easy to get
confused about which chunks of code should be repeated.

OUTER LOOP

INNER LOOP

In pseudocode, use indenting to show code
that is inside or dependent on other code.

182

The inner loop always has to run through all its sequences
before the outer loop code is run again.

FOR EXAMPLE, the background music would sound like this:

Bass drum, Bass drum, Bass drum,
Bass drum, Bass drum, Bass drum,
Bass drum

Snare

Bass drum, Bass drum, Bass drum,
Bass drum, Bass drum, Bass drum,
Bass drum

Snare

Bass drum, Bass drum, Bass drum,
Bass drum, Bass drum, Bass drum,
Bass drum

Snare

The bass sound is played 7 times (running through all
versions of its loop) before moving on to the next line of
code, playing the snare sound. Then the entire outer loop
is repeated until the game is over.

OUTER
LOOP

INNER
LOOP

183

w

 1. How are While loops different from For loops?

 2. When you put a loop inside a loop, it ’s called a
loop.

 3. If you want to repeat a chunk of code 6 times, you
should use a loop.

 4. What will the following print?

Repeat 3 times:
Print “Jump”
Repeat 2 times:

“Duck”
Print “Slide”

 5. When will the outer loop in the following pseudocode
stop repeating?

While number of ice cream cones > 0:
Get a cone
Repeat 3 times:

Add scoop of ice cream

184

 6. Why is indenting nested loops helpful when writing
pseudocode?

 7. If you want to loop through the contents of an array,
which type of loop should you use?

answers 185

 1. While loops will repeat as long as a condition
is true, but a For loop will repeat a set number
of times.

 2. Nested

 3. For

 4. Jump, Duck, Duck, Jump, Duck, Duck, Jump, Duck, Duck,
Slide

 5. The loop will stop running when there are zero ice cream
cones.

 6. Indenting is a great way to show where loops
begin and end, making the code easier to read and
understand.

 7. For loop

186

Chapter 17

EVENTS
 EVENTS are actions that cause something to happen
within a program. They make programs interactive because
the user is in control. For example:

clicking a mouse
pressing a key
tapping a touch screen

187

Events can also be things that happen within the program-
like when a character dies and the message “Game Over”
appears.

Events can be external actions from a user, like a mouse
click. They can also be internal actions that happen within a
program, like a web browser completely loading a web page.

An EVENT HANDLER is the code that is run when an
event happens. Pressing the spacebar in a game is an event,
but the event handler is the code in the game that tells a
character to jump when the spacebar is pressed.

FOR EXAMPLE, in a fruit-chopping game, you could add
code like the pseudocode below that swings a chef‘s knife
every time the spacebar is pressed.

on press_spacebar:
swing chef‘s knife

188

w

answers

 1. Give an example of an event from a keyboard.

 2. How is the event handler different from an event?

 3. What would your favorite app be like without events?

 4. What is the event in the following pseudocode?

on-screen tap:
If player tapped balloon:

Pop balloon

 5. What is the event handler in the following pseudocode?

on-screen tap:
If player tapped balloon:

Pop balloon

189

 1. Pressing any key on a computer’s keyboard
could be programmed to be an event that can be
used to trigger something to happen in a program.

 2. The event handler is the code that runs when an event
happens. Events are actions.

 3. Apps and all interactive programs wouldn’t be useful
without events. You wouldn’t be able to interact with it.
Programs would effectively become pictures or movies
that you can look at but not interact with.

 4. The event is the player physically tapping the device’s
screen that this program is running on.

 5. The event handler is the code that tests if the balloon
was touched and pops the balloon.

190

Chapter 18
PROCEDURES

REUSING CODE
A PROCEDURE is a piece of code that you can easily use
over and over. Loops are great when you want to repeat an
action multiple times in a row. But when you want to use the
same chunk of code in different parts of a program, you will
need a procedure.

For example, in a four-person game we could program each
character individually to jump when each player presses
their jump button. But a better
way is to create a single jump
procedure for each character to
use when each player presses
their jump button.

Declaring a Procedure
Instead of copying and pasting the same chunk of code
throughout a program, a programmer can save that
chunk of code and name it. When the name of the code

PROCEDURE
A piece of code that has
a name and completes a

specific task

191

HIS MAJESTY HAS
DECLARED A NEW

PROCEDURE . . .

(the procedure) is used in a program, the computer
understands that it should use that chunk of code.

To create a procedure, you
must declare it by giving it
a name and adding the code
you want to use as a procedure.
(It ‘s like declaring a variable,
where you give a variable
a name and a value).

You could declare a jump
procedure for the four-person
game by calling it “jump” and
adding the code to it that makes
a character jump.

function jump

move up

pause

move back down to the ground

STEP 1: Identify the chunk of code to be saved:
move up, pause, move back down to ground.

name of procedure

code for the
procedure

A function is also a chunk
of code. Each function

performs a specific task,
like “print.”

192

STEP 2: Name the chunk of code and save:
Jump = move up, pause, move back down to ground.

Calling a Procedure
Declaring a procedure just gives it
a name; it won’t run the code. The
procedure will not do anything if you
don't tell it to. When you’re ready to
use the procedure in your program,
you have to CALL it.

For example, a procedure can be called as many times as
you want.

When Player 1 hits the spacebar
Jump

When Player 2 hits the up arrow
Jump

When Player 3 hits the W key
Jump

When Player 4 hits the I key
Jump

name of procedure

CALL
When you use
the name of a
procedure in a

program so that it
can run the code

193

The same procedure-jump-is called when four different
events happen. When the computer reads “jump,” it will
look up the jump function and run the code found there.

Parameters and Returns
 PARAMETERS are variables whose value is passed into a
procedure. It can give limits or ranges to the procedure, like
“jump 3 times.” The only difference between a parameter
and a variable is that a parameter value can only be used
within a procedure, but a variable can be used throughout
the entire program.

A parameter’s input can change how a function acts.

HELLO, I’M
CALL ING ABOUT
THE PROCEDURE.

THE . . . WHAT?

YA GOT
ME,

DOC!

194

FOR EXAMPLE, in a space battle game we can use a
function to animate a laser shooting out of a spaceship’s
gun. Because we want the laser to shoot at whatever
the user is aiming at and not the same spot every time,
we need to input (to the laser function) the location that
the user is aiming at. The laser function can then change
where it shoots each time the user fires the spaceship’s
gun.

Function Shoot_Laser (x,y):
Display laser graphic next to
spaceship gun
While on the screen:

Move toward (x,y)

X and y parameters can give the x- and y -coordinates to the
function so the laser shoots in the direction the player is aiming.

195

Some procedures or functions can RETURN A VALUE .
The return value is the procedure output. Depending on the
procedure, you could get a different return value every time
you ran it.

Parameters and return values are often used in the
same function.

FOR EXAMPLE, if you made a procedure that
calculated the average reaction speed of a game player,
the parameters would be the reaction times of the player,
and the return value would be the average of all the
player’s times.

Function Average_Time (Player_Times_array):
Average = Sum all times in Player_Times_array

divided by number of items in array
Return Average

After calling the Function Average_Time,
the function would return a value that is
the player’s average time.

This is the task. This is how
the task is
accomplished.

This is the result of the task.

196

w

answers

 1. A piece of code that you can easily use over and over
again is called a .

 2. What ’s the advantage of using parameters with a
procedure?

 3. The output of a procedure is called the value.

 4. If you want to use the same chunk of code multiple
times in your program, you should make the code a

.

 5. What is the return value for the following function?

Score = 5
Function Score_Bonus (score):

Return Score + 10

197

 1. Procedure

 2. It allows you to reuse the same code many times, even
with different data.

 3. Return

 4. Procedure or function

 5. 15

198

Unit

6
Programming
with Scratch

199199

Chapter 19
GETTING
STARTED

GETTING TO KNOW SCRATCH
Scratch is a free graphical programming language.

It is a programming language that is simple to use
because you don’t have to type in commands.

It works by snapping precoded BLOCKS together to
create scripts (programs).

Scratch is useful
for making games
and interactive
stories.

BLOCK
A block in Scratch is a graphic that
represents a chunk of code. Blocks

snap together depending on
their shape (like puzzle pieces).

200

BLOCKS
Instead of programming by typing out commands, in
Scratch programs are made by connecting blocks together
vertically. All a user has to do is snap blocks together and
their code will run in order from the first block (at the top)
to the last block (at the bottom).

Blocks look like this

Blocks fit together like puzzle pieces and come in several
categories that organize blocks into similar actions. There
are six types of blocks that snap together in different ways
depending on their shape (like puzzle pieces that only fit in a
specific way). The shape of the block doesn’t control what it
does; it only controls how other blocks connect to it.

You can stack a couple of blocks together to make a short
and simple program that will move a character across
the screen. Or you can make a long and complicated
program that uses hundreds of blocks, like for a game
with multiple levels.

Block

Block

201

The Blocks menu organizes all the blocks into nine categories,
each represented by a colored dot and a category title.

SOME SAY HE’S BEEN CODING FOR OVER
A HUN DRED YEARS AN D HIS PROJECT

USE S A MILL ION BLOCKS!

Blocks

Category

Blocks palette

Blocks menu

202

Each category is a grouping of blocks that does similar
things:

Motion, Looks, and Sound blocks control objects in
the program and what they do.

Variables and Operators blocks store and manage
information.

Events and Sensing blocks make specific actions
happen.

Control blocks direct the program, script.

My Blocks allow you to make and store your own
custom blocks.

Scripts
A single group of blocks that are all connected is called a
 SCRIPT . A script can be a very basic program that is two
blocks long, or a million (or more) blocks long. Any number of
scripts can be used together to make a single project. Large
projects such as a multilevel game can use dozens of long
scripts.

When making a script, you can stack blocks together or
place one block inside the other.

203

when clicked

say join Hello, name

start sound Meow

Scripts are created in the
SCRIPTS AREA .

Blocks are used by dragging
them over from the Blocks
palette to the Scripts Area.

The green block is placed
inside the purple block.

SCRIPTS AREA
The space on the screen where

blocks are combined
to make scripts

Scripts

Drag blocks over

Scripts Area

204

You can add COMMENTS
by right-clicking (or ctrl-clicking
for Macs) directly on a block
or on the Scripts Area and
selecting “Add Comment.”
Comments help
programmers keep
track of what specific
chunks of code do and
make it easier to share
code with others.

FOR EXAMPLE, if you wrote a chunk of code that
slowly subtracted health points from a player in a game,
you could comment on it as a reminder to yourself that
“this code is for the poison effect; it decreases player
health by 5 points every
10 seconds.”

Comments are not run
as part of the code.

This is what a Scratch
comment looks like.

I’M WRITING
A SCRIPT. ME TOO!

205

If you’re using the online version of Scratch, you can store
your scripts in the backpack area.

Storing scripts is helpful because you can save time and
effort by using the same script in more than one project.

Backpack

206

FOR EXAMPLE, you might want to make a game
that has a kangaroo that jumps. If you’ve already
made a game that has a rabbit jumping,
you could open the rabbit game,
drop the jump script from the
rabbit game into the backpack,
open the new game, and
drag the jump script from
the backpack to your new
kangaroo game.

I’M GOING
TO SAVE THIS

RABBIT SCRIPT
FOR LATER.

SWEETCODING TIP!

207

SPRITES
 SPRITES are the characters and objects used in programs.
You can control sprites with blocks.

Programs can use one or many sprites. Scratch has a
library of sprites. You can also draw or upload your own
sprite.

The SPRITE LIST displays all
the sprites used in a project.
Each sprite is represented by
a THUMBNAIL IMAGE .

THUMBNAIL IMAGE
A smaller version of
the original image

Sprite lis t

Selected sprite

Sprite thumbnails

New sprite
menu

208

When you have multiple sprites in your program, click on
the thumbnail to select the sprite you want to write a script
for, change the appearance of, or add a sound to.

New sprites can be added to the Sprite list using the New
Sprite menu, where you can Choose a Sprite, Paint, Surprise
(a random sprite from the library is chosen for you), or
Upload Sprite.

Costumes
Each sprite can have
multiple COSTUMES .
Costumes let you change how
a sprite looks, like the position of
its limbs, what it ’s wearing, or
its size. Costumes can be used to
animate sprites, like the pages in
a flip-book cartoon.

FOR EXAMPLE, here are four costumes that can be used
to make it look like the sprite is moving:

COSTUMES
Different images used to

change the appearance of
a single sprite

209

Costumes are edited in the Costumes tab.

The COSTUME LIST shows a thumbnail for each of the
sprite’s costumes. In the New Costume menu, you can:

choose a costume from the library
draw or upload a file
take a picture

You can view the costumes
of other sprites by selecting
the sprite in the Sprite list.

Costume lis t

Image Editor

210

The IMAGE EDITOR has tools to draw new costumes
or edit the costumes of existing sprites. Costumes can be
created in either BITMAP or VECTOR mode. Both modes
will allow you to create the same artwork, but they are
different in how the image is made.

Bitmap mode: Tools are more recognizable (paintbrush, line,
circle, text, fill, erase, and others) as editing tools, but images
can look grainy when enlarged.

Vector mode: Add, resize, and reshape
shapes by pulling at the corners. Vector
mode creates graphics that are more
smoothly enlarged, making it better
to use for projects that are viewed in
full-screen mode.

211

Sounds
You can program your sprites to play sounds using blocks in
the Sound category.

The Sound list shows all the sounds available for the selected
sprite. You can also add sounds from Scratch’s sound library or
from uploaded music. Or you can record your own sound.

The Sound Editor allows you to edit sounds.

The shape on the screen represents the sound. It changes as
the sound is changed.

Sound lis t

Sound Editor

212

Setting the Stage
The STAGE is the place where you can see the output of
running your script. The green flag and the stop sign start
and stop the program respectively.

Start
Stop

Ful l screen

Stage

213

(x, y)

Sprites move around the stage using a grid system like the
coordinate system used in math. The x- and y-coordinates
are used to identify locations.

The x- and y-coordinates at the center of the stage are
(0, 0). The stage is 360 steps tall and 480 steps wide.

5

4
3
2

1

-5

-4
-3
-2

-1
54321-5 -4 -2 -1-3

y

x

214

 MOTION BLOCKS move sprites around. They allow you to
change the x- and y-coordinate positions.

FOR EXAMPLE, the
change x by 10

 block
will move a sprite 10 steps along the x-axis
(10 steps to the right). You could use the same block but
change the 10 to -10 to move the sprite -10 steps along
the x-axis (10 steps to the left). The “change y by ()” block
moves a sprite up and down along the y-axis.

Motion
block

HEY! THIS
GRID LOOKS

JUST L IKE THE
COOR DINATE

PLANE I
LEARNED
ABOUT IN

MATH CLASS.

215

The background image (scenery)
on the stage is called the
 BACKDROP . Select the stage
thumbnail to create scripts for
your backdrop and bring up the
backdrop tab. You can edit backdrops with the backdrop
tools in the backdrop tab. You can add scripts, additional
backdrops, and sounds to the backdrop.

Tip: Add background theme
music to a backdrop
to play music while

users play your game!

Backdrop tab
Stage backdrop

Backdrop tools

Backdrop

216

Sharing Projects
The online version of Scratch allows users to publish and
share projects with the community. Once a project is shared,
anyone in the world who goes to the Scratch website can
see it.

When projects are shared, community members can leave
comments (questions, positive feedback) on the project pages.
Each project has its own project page where the owner adds
instructions, notes, and credits.

Extensions
 EXTENSIONS can be
used to add more blocks
to the palette.

Extensions include:

* Music blocks that can play notes like musical instruments.

* Pen blocks that can be used to draw on the stage.

* Blocks that add interactive capabilities, like video
sensing, text to speech, and translate.

EXTENSIONS
Additional sets of new

blocks that can add
more functions

217

* Blocks that allow Scratch to program other devices like
micro:bit, LEGO Mindstorms EV3, and LEGO WeDo 2.0.

FOR EXAMPLE, you could build a Lego robot with a
Mindstorm EV3 kit, connect it to your computer, and then
use Scratch to program it to move around.

218

w

 1. Describe what a script in Scratch is.

 2. What are blocks in Scratch used for?

 3. What is the Scripts Area used for and how is it used?

 4. If you want to save a chunk of code to use in another
project, which Scratch feature should you use?

 5. Which of the following comments would not be
appropriate to post on a project?
A. The project rocks!
B. How did you make the cat sit on the cactus?
C. Great project. FYI I found a bug on level 2 in the game.
D. What a waste of time, you should quit coding now.

More questions 219

 6. Explain how a sprite would move on the stage with each
of the following blocks:
A.

B.

C.

 7. A stack of blocks that will run as part of a program is
called .

 8. Describe what a costume is.

 9. What is the stage used for?

 10. What do you call the background image on the stage?

 11. How can you participate in the Scratch community?

change y by 100

go to x: 0 y: 0

change x by: 100

220

 1. A script is a collection of blocks that have been
stacked together. Scripts can be a couple of blocks
or many dozens of blocks long. They can be combined
to create a program.

 2. Each block represents a chunk of code. Instead of
typing out words, Scratch uses these blocks as the
instructions found in a program.

 3. The Scripts Area is where the program is created. Blocks
are dragged from the Blocks palette to the Scripts Area
and snapped together to create scripts.

 4. The backpack

 5. D

More answers 221

 6. A. The sprite would move up 100 steps.
B. The sprite would move to the center of the screen.
C. The sprite would move to the right 100 steps.

 7. A script

 8. A costume is a different version of what the
sprite looks like.

 9. It ’s where you can see your code run.

 10. The backdrop

 11. You can share your scripts and post comments on
other members’ scripts.

WAIT! LET ME
CHANGE

MY COSTUME
FIRST!

222

when clicked

move 10 steps

say Hello, World!

start sound Meow

ask What's your name? and wait

Chapter 20
BASIC

ALGORITHMS
When you run a program in
Scratch, each block completes
its task before moving on to the
next one in the script. Scripts run
starting with the top block and
working down to the last block.

An algorithm is a list of
steps to complete a task.

1st

2nd

3rd

4th

5th

223

when clicked

move 10 steps

say Hello, World!

start sound Meow

ask What's your name? and wait

There are two ways to make a script run:

Click on any of the blocks in the script. (This runs
the entire script starting at the top.)

Use an event block.

TYPES OF BLOCKS
The most commonly used block types are hat blocks and
stack blocks.

When a script
is running, all

the blocks in the
script glow at the

same time.

EV ENT BLOCK

224

WE’RE ALWAYS ON TOP OF THINGS!

ME TOO!

A HAT BLOCK starts the script it is attached to. It does
not have a notch on its top and cannot fit under other
blocks. Hat blocks are event handlers in Scratch-they listen
for events and run when the event happens. For example,
when green flag clicked is one of nine event blocks; it runs
the code attached to it when the user clicks the green flag.

Examples of events are when a user presses a key on
the keyboard or when a sprite is clicked on.

A STACK BLOCK is a rectangular block that connects to
other blocks.

ANIMATING A CAT
The default sprite for every new project is the SCRATCH
 CAT . Sprites can be programmed to move around the stage
using blocks in the Motion category.

225

when clicked

move 10 steps

move 10 steps

WHAT ARE YOU
GOING TO MAKE ME DO?Walk

This script makes the Scratch Cat move
forward 10 steps when the green flag
is clicked.

Some blocks have fields in them where you can type in your
own numbers or text.

These fields are called PARAMETERS . Click on them to
change or add numbers or text to them.

1, 2, 3, 4, 5,
6, 7, 8, 9, 10

Parameter (add input here)

226

when clicked

move 10 steps

next costume

WELL, THEN,
 I GUESS IT MUST BE TRUE!

say I'm the coolest person in the world.

Parameters give the blocks more information and allow
you to customize their actions. For example, you can use the
say () block to make a sprite say what you want it to.

Not all blocks have parameters-
some are just labeled with the
command they perform.

This script makes the Scratch Cat
move forward 10 steps then switch
to its next costume every time
the green flag is clicked.

Parentheses () are used to show a parameter,
or input field, when writing out Scratch code.

For example, this block:

would be written like this: move () steps.

move 10 steps

227

when clicked

pen down

move 10 steps

next costume

turn 15 degrees

If a script was made up of the event block and a move (1)
step block, when you click the green flag a bunch of times,
the Scratch Cat will walk across the stage. Clicking the green
flag 3 times makes the cat take 3 steps, like this:

Sprites don’t have to walk
in straight lines. To make the
Scratch Cat walk in a circle, add
the turn clockwise (15) degrees
block to the end of the script.
Then press the green flag 24
times to make the Scratch Cat
walk in a complete circle. Use
the pen down block to draw
the circle.

You press the green flag 24 times because 360
(the number of degrees in a circle) divided by 15

(the number of degrees turned each time) equals 24.

228

To make the Scratch Cat move in a bigger or smaller circle,
the parameters in the move () steps and turn clockwise ()
degrees blocks can be changed. For example, to make the
circle bigger, you can change the turn clockwise () degrees
input field from 15 to 5. Click the green flag 72 times, and it
will make a bigger circle.

The blocks in the Pen
category can be used to
draw shapes on the stage.
The pen down block is used
to trace a line wherever
the sprite moves.

To add pen blocks, open the
Add Extension menu (bottom-

left corner) and select the
Pen category. After the Pen

category is added, you’ll see
the Pen category blocks at the

end of the Blocks menu.

229

when clicked

move 10 steps

next costume

turn 15 degrees

pen down

To insert a block within a script:

1. Hold the block between two
other blocks to get a gap and
shadow to appear.

2. Let go of the mouse.

Glide
Another way to make sprites move around the stage is the
glide () secs to x: () y: () block found in the Motion category.
Instead of making the sprite walk or move instantly the way
the move () steps block does, the glide () secs to x: () y: () block
assigns a specific amount of time to move the sprite to a
new location. The first parameter tells the sprite how long
to take (in seconds), and the other two parameters tell it
exactly where to go on the stage.

The block wil l be
inserted here.

Blocks can be inserted into the middle of scripts, not just added to
the end. Scripts are run block by block from the first one at the top to
the last one at the bottom. In order to trace a line wherever the sprite
moves, the “pen down” block must run before the Scratch Cat starts to
move. Insert the block toward the top of the script instead of at the end.

230

glide 1 secs to x: -50 y: 50
 = glide for 1 second to

coordinates (−50, 50)

Another movement block, the go to x: () y: () block, can instantly
move the sprite to a specific point on the screen every time
the script runs. By entering 50 in the x parameter field and 50
in the y parameter field, the Scratch Cat will automatically
jump to the location (50, 50).

HEY, MAN,
WHAT’S THE RUSH?
I’M JUST GONNA

GLIDE MY WAY OVER.

GOTTA MOVE,
MOVE, MOVE!

Glide on over to
the next page

231

when clicked

go to x: 50 y: 50

erase all

pen down

glide 1 secs to x: -50 y: 50

glide 1 secs to x: -50 y: -50

glide 1 secs to x: 50 y: -50

glide 1 secs to x: 50 y: 50

FOR EXAMPLE: The following script makes the Scratch
Cat glide around in a square.

1

2

3

4

5 Blocks #5-8 move
the sprite to al l four
corners of a square.6

7

8

Block #1 runs the script when
the green f lag is clicked.

Block #2 jumps the sprite
to the location (50, 50).

Block #3 erases al l previous ly made
pen marks.

Block #4 traces the path of the sprite
as it moves.

232

DEBUGGING STRATEGIES
Programs don’t always run as the programmer intended.
There are strategies to debug (fix problems):

Review scripts one block at a
time. Read each block out loud
and think about what each
block actually does.

Work with small chunks of
code. Break up scripts and run
only small chunks at a time. After running a chunk with
no problems, add another set of blocks and continue to
check for errors.

Comment on scripts explaining what they do and review
the blocks to make sure they do what you are expecting.

Ask a classmate to help by using one of the above
strategies together.

233

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

BLOCKS AND THEIR FUNCTIONS

Motion
The Motion blocks are used to move a sprite around.

Move () steps: A stack block that moves the sprite forward

Turn clockwise () degrees: A stack block that turns the sprite clockwise
(to the right)

Turn counterclockwise () degrees: A stack block that turns the sprite
counterclockwise (to the left)

Go to x: () y: (): A stack block that jumps the sprite to the location at the
x- and y-coordinates

234

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

Go to (): A stack block that jumps the sprite to the mouse pointer or
to a random position on the stage

Point toward (): A stack block that points the sprite toward the mouse or
another sprite

Change x by (): A stack block that moves the sprite along the x-axis

Set x to (): A stack block that jumps the sprite to the location along
the x-axis

Change y by (): A stack block that moves the sprite along the y-axis

Set y to (): A stack block that jumps the sprite to the location at the y-axis

235

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

move 10 steps

turn 15 degrees

turn 15 degrees

go to random position

go to x: 0 y: 0

glide 1 secs to random position

glide 1 secs to x: 0 y: 0

point in direction 90

point toward mouse-pointer

change x by 10

set x to 0

change y by 10

set y to 0

if on edge, bounce

set rotation style left-right

x position

y position

direction

If on edge, bounce: A stack block that turns the sprite around when it
hits the edge of the stage

Set rotation style (): A stack block that sets the rotation style

X posit ion: A reporter block that holds the x value of the sprite’s location

Y posit ion: A reporter block that holds the y value of the sprite’s location

Direction: A reporter block that holds the direction value of the sprite

236

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

Looks
The Looks blocks are used to change how a sprite looks.

Say () for () seconds: A stack block that makes a speech bubble appear
above the sprite for a set number of seconds

Think () for () seconds: A stack block that makes a thought bubble
appear above the sprite for a set number of seconds

Think (): A stack block that makes a permanent thought bubble appear
above the sprite

Switch costume to (): A stack block that switches to the named costume

237

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

Next costume: A stack block that changes the sprite’s costume to the next
one in the costume list

Switch backdrop to (): A stack block that switches to the backdrop that is named

Next backdrop: A stack block that changes the backdrop to the next one in
the backdrop list

Change size by (): A stack block that changes the size of the sprite by the
number specified

Set size to ()%: A stack block that sets the size of the sprite to a set percentage

Change () effect by (): A stack block that changes an appearance on the
sprite by a set amount

Set () effect to (): A stack block that sets an appearance on the sprite to
a specific setting

238

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

say Hello! for 2 seconds

say Hello!

think Hmm... for 2 seconds

think Hmm...

switch costume to costume1

next costume

switch backdrop to backdrop1

next backdrop

change size by 10

set size to 100 %

change color effect by 25

set color effect to 0

clear graphic effects

show

hide

go to front layer

go forward 1 layers

costume number

backdrop number

size costume #

Clear graphic effects: A stack block that resets the graphic effects to 0

Show: A stack block that shows the sprite

Hide: A stack block that hides the sprite

Go to () layer: A stack block that brings the sprite in front of or behind
all other sprites

Go () () layers: A stack block that sends the sprite in front of or back
behind other sprites

Backdrop (): A reporter block that holds the number of the backdrop
 being shown

Size: A reporter block that holds the value of the size of the sprite

239

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

Sound
Sound blocks are used to make and modify sounds.

Play sound () until done: A stack block that plays the selected sound and
waits to continue the rest of the script until the sound is done playing

Start sound (): A stack block that plays the selected sound

Stop all sounds: A stack block that stops all sounds in the program
from playing

Change () effect by (): A stack block that changes the sound effect on
sounds being played by the set amount

Set () effect to (): A stack block that sets the effect on sounds being
played to a set number

Clear sound effects: A stack block that removes all sound effects

240

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

play sound Meow until done

start sound Meow

stop all sounds

change pitch effect by 10

set pitch effect to 100

clear sound effects

change volume by -10

set volume to 100 %

volume

Change volume by (): A stack block that changes the volume by the
set amount

Set volume to (): A stack block that changes the volume to the set percentage

Volume: A reporter block that holds the value of current volume level

241

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

Pen
Blocks in the Pen category are used to draw on the stage.
The Pen category is added as an extension and is not one
of the default categories.

Erase all: A stack block that removes all pen marks and stamps from the stage

Stamp: A stack block that stamps the image of the sprite to the stage.
Stamps cannot be controlled with blocks. Stamps are copies of images
of the sprite printed onto the stage.

Pen down: A stack block that begins to trace the movements of a sprite
with lines

Pen up: A stack block that stops tracing the movements of a sprite

Set pen color to (): A stack block that sets the pen color to the selected color

242

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

Change pen color by (): A stack block that changes a quality of
the existing pen by the set amount

Set pen color to (): A stack block that sets a quality of the pen to
a specific numerical value

Change pen size by (): A stack block that
changes the pen size by the set amount

Set pen size to (): A stack block that sets
the pen size to the set amount

243

IT’S MORE FUN
TO FOLLOW
ALONG ON

YOUR COMPUTER.

244

w

glide 1 secs to x: -50 y: 50

answers

 1. What do all hat blocks have in common?

 2. What does the pen down block do?

 3. What does the following
block make a sprite do?

 4. How can you tell if a script is running?

 5. Select all that are true. Hat blocks can be placed:
A. above other blocks
B. below other blocks
C. inside other blocks

 6. Select all that are true. Stack blocks can be placed:
A. above other blocks
B. below other blocks
C. inside other blocks

 7. How do you insert a block between two other blocks?

 8. Which block should you use to erase all the pen markings
on the stage?

245

erase all

stamp

pen down

pen up

set pen color to

change pen color by 10

set pen color to 50

change pen size by 1

set pen size to 1

 1. Hat blocks always go on top of scripts, and
they make scripts run.

 2. The pen down block makes it so that the sprite draws a
line along the path as it moves.

 3. Take 1 second to move to the location (-50, 50).

 4. The blocks glow in the Scripts Area.

 5. A

 6. A, B

 7. Drag it between the blocks where you want to place
it, wait for the highlight to show up, then let go of the
mouse button to drop it in.

 8. Erase all

246

Chapter 21
DATA AND
OPERATORS

VARIABLES
Storing information is useful when
you want to reuse it while running
a program. Information can be
stored using variables:

Variables: hold one type of value-
a number, string (text), Boolean,
or list

 REPORTER BLOCKS report out, or
deliver, the current value of the variable
they represent. They can store numbers
and words as variable values.

Reminder: Boolean
values can only be
either true or false.

A VARIABLE IS
WHERE A PROGRAM

STORES DATA. THE
DATA IS CALLED

ITS VALUE.

247

A reporter block is placed inside the parameter area of any
other block.

A reporter block is shaped
like this:

Variables
You can create a new variable by clicking on “Make a
Variable” in the Variable category of the Blocks menu. After
you make a new variable, a new reporter block with the
variable name appears in the Blocks palette.

There are two ways to change the value of a variable:

1. set () to () block: used to replace the current value
with a new value

2. change () by () block: used to add to or subtract
from the current value of the variable

There are reporter blocks in every
blocks category except Events and Control.

248

set score to 0

change score by 1

score

set score to 0

change score by 1

score

set score to 0

change score by 1

score

FOR EXAMPLE, in a game we can create a variable
called “score” and use the set (score) to (0) stack block to
set the score variable to 0 when the game begins. We can
also use the change (score) by (1) stack block to increase
the score by one point every time the user scores a point
during the game. We can access the value of the score
variable with the
score reporter block.
The reporter block could
be used to display the
score on the stage or
tell when a player has
won the game based
on points scored.

249

go to x: mouse x y: mouse y

when clicked

ask What's your name? and wait

say join Hello answer

Built-In Variables
Some reporter blocks have built-in variables that store data.
The values of the variables can be used in programs.

For example, the built-in
variables called mouse x
and mouse y name the
position on the x-axis and y-axis of the user’s mouse cursor on
the stage. These values can be inserted into the parameters
of the go to x: () y: () stack block to make a sprite go to the
user’s mouse location on the stage.

USER INPUT
Some built-in variables store USER INPUT . We can
ask for users to enter words or numbers by using the
ask () and wait stack-type block found in the Sensing
category. Their answer
is stored in the answer
reporter block. We can
ask a user to enter their
name, then use the say ()
block to have the sprite
tell the user hello with
their name:

the things users type in

Answer reporter block:
user input stored here

250

add Indira to high_score

add Leo to high_score

add Kemi to high_score

Lists
In Scratch you can store multiple values in a single place
with LISTS.

List blocks are used to set values and to use the data they
store later in the program.

FOR EXAMPLE, we could make a high-score list called
“high_score” and use the add () to () stack block to add
the names “Indira,” “Leo,” and “Kemi”:

The ask () and wait block makes a speech bubble appear
above the sprite and a text box appear at the bottom of the
stage. The script pauses until the user types an answer in

the text box and presses enter on the keyboard.

251

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Create a new list by clicking on the Make a List button in the
Variable category of the Blocks menu. After creating a new list,
these blocks will appear in the Blocks palette:

252

replace item 3 of high_score with Margaret

Lists start out empty. Use the add () to () blocks to add the
names to the high_score list. The list display (shown on the
stage) will show that the three names have been added to
the high_score list:

The replace item () of () with () stack block is used to
replace items on the list. In the first parameter, type the
number of the index for the item to be replaced. To replace
Kemi with Margaret, type “3” because Kemi is third in the list.
In the last parameter, type “Margaret” because that ’s the
new value.

Other list blocks can be used to delete and insert new
list items.

253

score > 50

go to x: mouse x y: mouse y + 50

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

+

-

*

/

pick random 1 to 10

mod

round

abs of

OPERATORS
OPERATORS are used to perform calculations on values. There
are two types of operators blocks:

 and

The reporter blocks are used to perform mathematical functions
on values (such as add, subtract, multiply, divide, round, and
others). For example, we could make a sprite go to a location 50
steps above the user’s cursor using an addition reporter block:

Boolean-type operators
blocks are used to evaluate
statements as true or false.
For example, we can use the () > () block to determine if
a player’s score is greater than 50:

Math Blocks
In the Operators category, there are reporter blocks with
math operators built into them:

REPORTER BOOLEAN

254

6 - 2

2020 - birth_ year

Each block has one or two input fields where you can insert
numbers or variables. The value for each block is the solution
to the math equation shown in the block.

FOR EXAMPLE, if you wanted to subtract 6 - 2, you
would use the () - () block:

You can use math with
variables by inserting
the reporter variables
block into the input field
of a math block.

FOR EXAMPLE, to find out someone’s age, you could set
a variable, “birth_year,” to the year someone was born (for
example, 2005), and subtract that from the current year:

WHAT?
YOU MEAN I CAN

GET SCRATCH TO DO
MY MATH HOMEWORK

FOR ME?!

Name of variable: birth_year
Value: 2005

The value of this
block is 4.

255

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

4+ =22

true

4+ =12

false

Boolean Blocks
 BOOLEAN BLOCKS evaluate information to be true or
false. They have statements or math equations inside them
that are either true or false.

EXAMPLE:
The “=” Boolean block looks
at both sides of the equal
sign and decides if they
are the same.

The value of the Boolean block is true because 2 + 2 = 4.

If the Boolean block had the equation 2 + 1 = 4, then the value
of the block would be false.

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

4+ =22

true

4+ =12

false

256

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

=

true

false

Marcos Marcos

=Marcos Greg

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

=

true

false

Marcos Marcos

=Marcos Greg

Boolean blocks can also be used to compare words. For
example, Marcos = Marcos is true. Marcos = Greg is false.

Be careful with spaces!
Spaces before or after each

word compared must match.

WE DON’T EV EN

LOOK ALIKE.

HI, MARCOS.

OH, HEY,
MARCOS.

257

score > 10 and timer < 200

In the Operators category, there are Boolean blocks for
comparison (<, =, >) and logical operations (and, or, not). These
blocks can be combined by nesting them within each other.

FOR EXAMPLE, you could use the () > () , () < () , and
() and () Boolean blocks to see if a variable, score, is greater
than 10 and the timer is less than 200. To do this, insert the
() > () and () < () blocks inside the left and right input fields
of a () and () block:

In the Sensing category, there are Boolean blocks that check
for specific conditions. If the condition is met, the block’s value
is true; otherwise the value is false.

Nesting blocks means putting one or
more blocks inside another block.

These blocks are nested within a () and () block.

258

key space pressed?

touching color ?

key space pressed?

touching color ?

HEY, LET ME KNOW
WHEN THE SPRITE IS
TOUCHING GREEN.
THEN I CAN START
MY HOMEWORK.

FOR EXAMPLE, you could use the key () pressed?
Boolean block to sense if the spacebar on the keyboard
is pressed. Or, you could use the touching color () block to
check if the sprite is touching a certain color. When these
conditions are met, the blocks will have the value of true.

259

my variable

set my variable to 0

change my variable by 1

show variable my variable

hide variable my variable

Make a Variable

my variable

set my variable to 0

change my variable by 1

show variable my variable

hide variable my variable

Make a Variable

my variable

set my variable to 0

change my variable by 1

show variable my variable

hide variable my variable

Make a Variable

my variable

set my variable to 0

change my variable by 1

show variable my variable

hide variable my variable

Make a Variable

my variable

set my variable to 0

change my variable by 1

show variable my variable

hide variable my variable

Make a Variable

BLOCKS AND THEIR FUNCTIONS

Variables
The blocks in the Variables category are used to store and
change data as single-value variables or multiple-value lists.

variable name: A reporter block that holds the value of the
named variable

Set () to (): A stack block that sets the value of the selected variable to
a set number, string, or Boolean

Change () by (): A stack block that changes the value of the selected
variable by the set amount

Show variable (): A stack block that will show the variable value in a lit tle
display window on the stage

Hide variable (): A stack block that will hide the variable value display
window on the stage

260

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

These blocks give the user the ability to change a list of values.

list name: A reporter block that holds the value(s) of the named list

Add () to (): A stack block that adds the set value to the end of the
selected list

Delete () of (): A stack block that deletes an item from the selected list

Delete all of (): A stack block that deletes all items from the selected list

Insert () at () of (): A stack block that inserts a value at a location in
a selected list

Replace item () of () with (): A stack block that replaces the value in
a location of a selected list

261

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

my list

add thing to my list

delete 1 of my list

delete all of my list

insert thing at 1 of my list

replace item 1 of my list with thing

item 1 of my list

item # of thing in my list

length of my list

my list contains things ?

show list my list

hide list my list

Make a List

Item () of (): A reporter block that holds the value of an item in the
selected list

Item # of () in (): A reporter block that holds the index number value of
the set value in a list

Length of (): A reporter block that holds the number of items in
a selected list

() contains ()?: A Boolean block asking if a selected list has the set value in
it (Is “thing” an item in the list? It ‘s true if it is, and false if it is not.)

Show list (): A stack block that will show all the list values in a display
window on the stage

Hide list (): A stack block that will hide the list values display window on
the stage

262

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

STRING VALUES
Several symbols or
values that are set

in a row

The previous blocks give the user the ability to change more
than one value in a selected list.

Operators
Blocks in the Operators category are used to control data.
Many of the reporter blocks are
mathematical functions (like
addition, subtraction, multiplication,
and more). Other blocks are used to
change STRING VALUES .

() + (): A reporter block that holds the
value of the addition equation

() - (): A reporter block that holds the
value of the subtraction equation

() * (): A reporter block that holds the
value of the multiplication equation

() / (): A reporter block that holds the
value of the division equation

263

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

Pick random () to (): A reporter block that sets the value to a random
number between the two set values

() > (): A Boolean block that evaluates true or false based on whether
the value in the left field is greater than the value in the right field

() = (): A Boolean block that evaluates true or false based on whether
the values on the left and right sides of the equal sign are equivalent

() and (): A Boolean block that evaluates true or false based on whether
both Boolean blocks inside are true

() or (): A Boolean block that evaluates true or false based on whether
one or both Boolean blocks inside are true

Not (): A Boolean block that evaluates to the opposite value of the value
inside the parameter, so that a true parameter evaluates to false and
a false to true

Join () (): A reporter block that joins two values into one string

264

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

+

-

*

/

pick random 1 to 10

> 50

< 50

= 50

and

or

not

join apple banana

letter 1 of apple

length of apple

apple contains a ?

mod

round

abs of

Let ter () of (): A reporter block that holds the value of the specific letter of
a word

Length of (): A reporter block that holds the value of the number of characters
in a string

() contains ()?: A Boolean block that evaluates to true or false based on
whether the value on the left contains the letter on the right

() mod (): A reporter block that holds the value of the remainder of the
first value divided by the second

Round (): A reporter block that rounds the value to the nearest
whole number

() of (): A reporter block that holds the value of the selected mathematical
operation using the set number value (For example, you could use this block
to find the square root of a value.)

265

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

Sensing
Blocks in the Sensing category are used to understand
and store information about how the user interacts with
the program.

Touching ()?: A Boolean block that evaluates to true or false based on
whether the sprite is touching the mouse-pointer or another sprite

Touching color ()?: A Boolean block that evaluates to true or false based
on whether the sprite is touching the selected color

Color () is touching ()?: A Boolean block that evaluates to true or false
based on whether the selected color touches another selected color

Distance to (): A reporter block that holds the value of the distance
between the sprite and the mouse-pointer or another sprite

Ask () and wait : A stack block that asks the user to answer a question
using a text box and waits for the answer

266

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

Answer: A reporter block that holds the value of the user-given value
from the ask block

Key () pressed?: A Boolean block that evaluates to true or false based on
whether the selected key is pressed

Mouse down?: A Boolean block that evaluates to true or false based on
whether the mouse button is down

Mouse x: A reporter block that holds the value of the mouse location on
the x-axis

Mouse y: A reporter block that holds the value of the mouse location on
the y-axis

Set drag mode (): A stack block that makes a sprite draggable or not
draggable by the user

Loudness: A reporter block that holds the value of the loudness from an
attached microphone

267

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

touching mouse-pointer ?

touching color ?

color is touching ?

distance to mouse-pointer

ask What's your name? and wait

answer

key space pressed?

mouse down?

mouse x

mouse y

set drag mode draggable

loudness

timer

reset timer

backdrop # of Stage

current year

days since 2000

username

Timer: A reporter block that holds the value of the timer that
automatically starts when a program is run

Reset timer: A stack block that resets the timer to 0

() of (): A reporter block that holds the value of the selected variable for the
selected sprite or stage

Current (): A reporter block that holds the value of the current year,
month, date, day of week, hour, minute, or second

Days since 2000: A reporter block that holds the value of the days since
the year 2000

Username: A reporter block that holds the value of the Scratch username
of the Scratcher using the program

268

w

5 < 7

 1. Select all that are true. Reporter blocks can be placed:
A. above other blocks
B. below other blocks
C. inside other blocks

 2. What can you put inside an input field?

 3. What are the two possible values a Boolean block
can have?

 4. Explain what reporter blocks do. Why are they useful?

 5. What ’s the difference between the set () to () and
 change () by () blocks?

 6. What is the value of the block below?

A. True
C. False
C. 12
D. 35

More questions 269

5 * 7

when clicked

set speed to fast

change speed by 1

 7. What is the value of the block below?

A. True
B. False
C. 12
D. 35

 8. Which Boolean block would you use to see if the W key is
pressed on the keyboard?

 9. What ’s the difference between a math block (*, /, +, -)
and a comparison block (<, >, =)?

 10. What ’s an advantage to using a variable multiple times
in a program instead of typing out the values each time
the variable is used as a parameter?

 11. What’s wrong with
the following code?

 12. Describe how to make a variable called “velocity”
in Scratch.

270

 1. C

 2. Text, numbers, and reporter blocks

 3. True or false

 4. Reporter blocks are variables. They store information.
You can put them in the input field of other blocks.

 5. The set () to () block assigns a variable a value,
while the change () by () block adds a number to
the variable value.

 6. A

More answers 271

 7. D

 8. The key () pressed? block with the W selected

 9. Math blocks store number values, but comparison
operators are Boolean and store either true or false.

 10. One advantage is that if you need to change the value,
you can change it once by reassigning a new value to
the variable instead of finding every place the value is
and replacing it manually.

 11. You cannot use the change () by () block on a variable
value that is not a number. In the example, “speed” is set
to “fast,” which is not a number.

 12. In the “Variables” Blocks palette, click on “Make a
Variable.” Then type in “velocity” in the “Variable name:”
text field and press “OK.”

key w pressed?

272

REPEAT 20

Chapter 22
CONTROL BLOCKS

AND
EVENT BLOCKS

CONTROL BLOCKS
Blocks tell other blocks what to do. They tell scripts to run,
pause, repeat, and stop. They are different from event
handler hat blocks because they run based on internal
conditions instead of external events (like the clicking of
the green flag).

One type of control block is
the repeat block, which will
repeat the code inside it a
set number of times.

YIKE S, THAT
 BLOCK IS SOO
CONTROLL ING!

273

C BLOCKS AND CAP BLOCKS
The Control category also has two other
types of blocks: the C BLOCK and the
CAP BLOCK .

C blocks look like the letter C. Other blocks
can be placed in the gap of the C so that the
C block wraps around them. There are two main
types of C blocks: loops and conditionals.

Loops repeat the code placed in the gap of the block.

Conditionals run the code placed in the gap only if their
condition is met.

C blocks are found only in the Control category. There
are different types of loops and conditional statements,
but they all share the same basic C shape.

Cap blocks attach to the bottom of a script and are used to
stop running the script.

Other blocks cannot be
stacked below a cap block.

Cap blocks are found
only in the Control category.

PUT A CAP ON IT.
PARTY ’S OVER.

274

when 1 key pressed

play sound Meow until done

when 2 key pressed

play sound Chord until done

when 3 key pressed

play sound Cymbal until done

when 4 key pressed

play sound Beat Box until done

when 1 key pressed

play sound Meow until done

when 2 key pressed

play sound Chord until done

when 3 key pressed

play sound Cymbal until done

when 4 key pressed

play sound Beat Box until done

when 1 key pressed

play sound Meow until done

when 2 key pressed

play sound Chord until done

when 3 key pressed

play sound Cymbal until done

when 4 key pressed

play sound Beat Box until done

when 1 key pressed

play sound Meow until done

when 2 key pressed

play sound Chord until done

when 3 key pressed

play sound Cymbal until done

when 4 key pressed

play sound Beat Box until done

EVENT BLOCKS
There are six event handler blocks. The hat-shaped blocks
wait for things like a button press, mouse click, or message
broadcast. When an event handler registers that their event
happened, they run the script attached to it.

Event blocks can be used to make a soundboard that
triggers different sounds to play when different number
keys are pressed.

FOR EXAMPLE, the number keys 1, 2, 3, and 4 are each
assigned a different sound.

275

NOT YET!

The when backdrop switches to () block listens for the
backdrop to switch. For example, if you make a game that
switches to a new backdrop for every level, you could set up
an event to listen for the backdrop change and trigger new
opponents to appear.

The broadcast block is used to send out
messages. When this block is run, it broadcasts a message
out to all of the sprites. Messages are sent without the
user seeing anything, and only the when I receive () block
responds when a message is broadcast.

276

if touching color ? then

broadcast Game Over

when I receive Game Over

start sound Lose

switch backdrop to End Screen

HEY, GAME OVER.

THAT’S NOT
MY MESSAGE.

YAY! THAT’S
FOR ME.

IT’S GO TIME.

if touching color ? then

broadcast Game Over

when I receive Game Over

start sound Lose

switch backdrop to End Screen

BROADCAST

WHEN CLICKED WHEN I RECEIVE GAME OVER

FOR EXAMPLE, you could use a broadcast block in a
script that sends a message called “Game Over.” You could
then add a when I receive (Game Over) block in another
sprite or the backdrop to have it play a losing sound and
bring up a new backdrop ending the game.

277

forever

next costume

wait 0.1 seconds

STILL
WALKING.

LOOPS
All loops are C-type blocks. At the top of the C is where the
type of loop is shown (forever, repeat, or repeat until). The
code that is repeated goes in the “mouth” of the C. Other
blocks can stack above and below loops. You can also place
a loop block inside another loop block, making a nested loop.

Basic Loops
Scratch uses three types of loops:

forever, repeat (), and repeat until ().

Forever loops will run forever, or until the
program is stopped. You can animate a
character to look like it is walking by
using a forever block. You can tell
the sprite to continually switch to
the next costume. Loops run quickly,
so you can also add the block
wait () secs to slow
down the loop. type of loop

The curved arrow
is a reminder that,
at the end
of the loop, the
loop starts over
and runs again.

278

repeat 10

next costume

wait 0.1 seconds

repeat until key space pressed?

next costume

wait 0.1 seconds

Repeat () loops tell the sprite exactly how many times you
want it to run when you type in a number in the text box.

FOR EXAMPLE, you can tell a sprite to change to the next
costume and wait 0.1 seconds only 10 times instead of forever:

Repeat until () loops will continually repeat until the Boolean
statement inside the loop becomes true.

FOR EXAMPLE, you can tell a sprite to continually
change to the next
costume and wait 0.1
seconds until the user
presses the spacebar
on the keyboard:

NOW JUMP
10 TIMES.

279

pen down

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

move 100 steps

turn 90 degrees

pen down

repeat 4

move 100 steps

turn 90 degrees

Loops can make programs
more efficient. For example,
if you wanted to draw a square,
you could use a loop to make
your script better. Instead of
using all these blocks to draw
a square . . .

you can look for a pattern of
blocks that repeat themselves,
put the repeated blocks inside
a loop, and input the number
of times you want the script
to run.

Nested Loops
Nested loops are loops inserted
within a loop. Nested loops
are very helpful for repeating
 SUBROUTINES within a task.
They can help make scripts shorter
and more efficient.

Subroutines are often used
in games and to make
interesting art.

SUBROUTINE
A unit of code that

performs a specific task
and is used as part of a

larger program

280

when clicked

forever

go to x: pick random -220 to 220 y: 130

repeat 25

change y by -10

wait 0.1 seconds

FOR EXAMPLE, in a game where the user tries to
catch a falling apple, a forever loop can be used to keep
the game
going forever,
restarting the
apple at the top
of the screen
every time it
reaches the
bottom. A
repeat () loop
can be used to
animate the
falling apple:

WE’RE NESTING DOLLS!

WE’RE
NESTED
LOOPS!

REPEAT 10

REPEAT 20
REPEAT 5

281

when clicked

pen down

repeat 6

move 70 steps

turn 60 degrees

when clicked

pen down

repeat 72

repeat 6

move 70 steps

turn 60 degrees

change pen color by 10

turn 5 degrees

You can also use nested loops to make Spirograph-type
art. The repeat (6) loop in a script draws a hexagon. The
Scratch Cat uses the pen tool to draw a hexagon beneath it
as it moves along the path set by the repeat (6) loop.

Then nest that loop inside the
repeat (72) loop to redraw the
hexagon 72 times.

You can rotate to the right
by 5 degrees each time and
change the color of each
new hexagon as well.

282

Here’s what the script run to completion looks like. There are
72 hexagons of different colors, each rotated 5 degrees to
the right.

CONDITIONAL STATEMENTS
Scratch has two types of conditional blocks:

If () then

If () then else

Conditional statements use C-type blocks and are found only
in the Control category of the Blocks menu.

283

when clicked

ask Which door do you choose? Door 1 or Door 2? and wait

if answer = Door 1 then

say You walk through Door 1 and receive a magic wand.

else

say You walk through Door 2 and receive an enchanted hat.

Basic Conditional Statements
Basic conditional statements use only one Boolean block as
a condition and aren’t nested.

FOR EXAMPLE, you can use a basic conditional statement
to allow a player to choose a path in a game:

1. The script asks the user which door they choose.

2. A conditional block compares the user’s answer to
the term “Door 1” in a Boolean () = () block.

3. If the user answers “Door 1,” then the block inside
the first “mouth” will run.

4. If the user does not answer with “Door 1,” then the
code below “else” in the second “mouth” will run.

284

Compound and Nested
Conditional Statements
Conditional blocks can nest inside
each other just like loop blocks.
Nested conditionals are built
when you put one conditional
inside of another conditional.

In a single “if else” statement, there are two consequences.

CONSEQUENCE #1 CONSEQUENCE #2

TRUE FA
LS

E

IF

ELSE W
HE

NIF

285

Conditional blocks can be nested inside each other just like
loop blocks. Nested conditional blocks create a more complex
branching system, where many different results can occur.

Multiple nested conditional blocks can be used to create a
choose-your-own-adventure game. Start with the question
asking which door the user chooses and the first condition
with the Boolean block that is True if the user answers “Door 1.”
In the “else” (or FALSE) second “mouth” of the conditional
block, we can add another condition checking for “Door 2.”
Continue to nest conditional blocks to add to the number of
possible results.

CONSEQUENCE #1

CONSEQUENCE #2

CONSEQUENCE #3 CONSEQUENCE #4

IF

IF

IF

TRUE FA
LS

E

FA
LS

E

FA
LS

E

TRUE

TRUE

286

when clicked

ask Which door do you choose? Door 1 or Door 2? and wait

if answer = Door 1 then

say You walk through Door 1 and receive a magic wand.

else

if answer = Door 2 then

say You walk through Door 2 and receive an enchanted hat.

else

if answer = Door 3 then

say You walk through the secret Door 3 and receive an extra life.

else

say You have not chosen to walk through a door. You grow tired.

FOR EXAMPLE, this game has four possible outcomes:

Conditional statements can be combined to save space and
simplify the script. The and Boolean block is used to combine
two Boolean blocks.

outcome #1

outcome #2

outcome #3

outcome #4

287

if score > 100 and difficulty = hard then

broadcast StartBonusRound

if score > 100 then

if difficulty = hard then

broadcast StartBonusRound

FOR EXAMPLE, you can add a bonus round to a game
by combining two conditions to entering the bonus round:
having a score of over 100 points and playing on the
“hard” difficulty level.

Nested, these
conditions look
like this:

You can simplify
the script by
combining the
Boolean statements from both conditions
with an “and” operators block:

AND is True if both conditions are true;
OR is True if one or both conditions are true;

NOT turns True statements False and False statements True.

288

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

BLOCKS AND THEIR FUNCTIONS

Events
Blocks in the Events category are used to run scripts based
on events that happen while the program is running.

When green flag clicked: A hat block that runs the attached script when
the green flag is clicked

When () key pressed: A hat block that runs the attached script when
the selected key is pressed

When this sprite clicked: A hat block that runs the attached script when
the sprite is clicked

When backdrop switches to (): A hat block that runs the attached script
when the backdrop switches to the selected backdrop

289

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

when clicked

when space key pressed

when this sprite clicked

when backdrop switches to backdrop1

when loudness > 10

when I receive message1

broadcast message1

broadcast message1 and wait

When () > (): A hat block that runs the attached script when the video or
timer value goes above the set amount

When I receive (): A hat block that runs the attached script when
the selected message is broadcast

Broadcast (): A stack block that sends out the selected message to
every sprite

Broadcast () and wait : A stack block that sends out the selected message
to every sprite and waits to move on to the next block

290

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

Control
The Control category contains blocks that are used to control
the flow of a program.

Wait () seconds: A stack block that pauses the script for the set number
of seconds

Repeat (): A C block that repeats the code inside the set number of times

Forever: A C block that repeats the code inside forever or until the
program is stopped

If () then: A C block that, if the Boolean statement is true, runs the blocks

291

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

If () then else: A C block that, if the Boolean statement is true, runs the
blocks in the first part and otherwise runs the blocks in the second part

Wait until (): A stack block that pauses the script until the Boolean
condition is true

Repeat until (): A C block that repeats the blocks inside until the Boolean
condition is true

Stop (): A cap block that stops the selected script(s)

292

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

wait 1 seconds

repeat 10

forever

if then

if then

else

wait until

repeat until

stop all

when I start as a clone

create clone of myself

delete this clone

Clone Blocks: Cloning a sprite is when you make copies of
it. Cloning is useful when you need several copies of the
same sprite on the stage at once.

CONTROL

When I start as a clone: A hat block that runs attached script when
a clone is made

Create clone of (): A stack block that creates a clone of the
selected sprite

Delete this clone: A cap block that deletes the clone

293

w

when clicked

move 10 steps

broadcast message1

when I receive message1

say Oh, hello there!

broadcast message2

when I receive message2

say Hi!

when clicked

move 10 steps

broadcast message1

when I receive message1

say Oh, hello there!

broadcast message2

when I receive message2

say Hi!

when clicked

move 10 steps

broadcast message1

when I receive message1

say Oh, hello there!

broadcast message2

when I receive message2

say Hi!

 1. What are loops? Why are they useful?

 2. loops are loops within other loops.

 3. How is a repeat () loop different from a forever loop?

 4. What does the broadcast () block do? After a program
broadcasts a message, will the message appear on
the stage?

 5. Which kind of C block would you use to make a loop that
keeps repeating until the user earns 10 points?

 6. In the code below, what will be said first after the program
is started?

294

when clicked

repeat until key space pressed?

change size by 10

say Phew, I was growing too much! for 2 seconds

when clicked

repeat 3

repeat 2

say hip for 1 seconds

wait 0.1 seconds

say hooray for 2 seconds

 7. How many times will the word “hip” be said?

 8. What does a cap block do? How does its shape affect
how it connects to other blocks?

 9. Use the code below to answer the following question. When
will the sprite say, “Phew, I was growing too much!”?

More questions 295

set fruit to avocado

if fruit = apples then

say Make apple juice.

else

if fruit = grapes then

say Make grape juice.

else

say You don't have the right fruit.

when this sprite clicked

 10. What does the following event block do? Why are event
blocks important?

 11. What will happen in the code below if the variable “fruit”
is set to “avocado”?

 12. If you are trying to make multiple decisions that depend
on each other, which type of conditionals should you use?

296

 1. A loop is a chunk of code that is repeated.
They are useful because they can make your
code more efficient and easier to write because you
won’t have to copy and paste the same script over
and over again.

 2. Nested

 3. A repeat () loop will repeat the code inside it a set
number of times, but a forever loop will go on forever
or until the program stops running.

 4. The broadcast () block sends out a message for its
corresponding event block to run. No messages appear
on the stage; the message is sent without the user
seeing it.

 5. repeat until ()

 6. “Oh, hello there!”

 7. 6 times-the inner loop repeats “hip” twice, and the outer
loop repeats the inner loop 3 times. That ’s 2 x 3, which
equals 6.

More answers 297

 8. Cap blocks end a script; blocks cannot be connected
below a cap block.

 9. After the user presses the spacebar

 10. The when this sprite clicked event block will run when
the user clicks on the sprite. Event blocks make user
interaction possible. They also allow programs to run
different scripts at different times based on when
events happen.

 11. The sprite will say, “You don’t have the right fruit.”

 12. Nested conditionals

298

Chapter 23
REUSING
SCRIPTS

MAKE YOUR OWN BLOCK
You can turn a repeating part of a script into a new block.
This new block is called a PROCEDURE BLOCK . You
can make a new procedure block with its own commands
and behavior.

Procedures are named chunks of code that you can
use over and over again. In Scratch, you can make

a procedure block by making a new define () block.

define ()

299

When you make a new
procedure, you click
“Make a Block,” and
select the type of
block you would like
to make. Then you
define the procedure
with a definition
hat-type block (called define ()) and snap your code
blocks to it. After you make a new procedure block, a new
PROCEDURE CALL STACK BLOCK with the same name as the
new procedure is added to the My Blocks category of the
Blocks menu. You can CALL THE PROCEDURE (run it) with
the *new block name* stack block, which is named the same
as the new procedure.

For example, you can use a procedure block to make a game
where the object is to catch good items and avoid bad ones.
The game can give points to the player for catching good
items and take points away when they catch bad items. Your
game can have four items, each worth different points:

crystal = 10 points
potion = 5 points
bat = -10 points
lightning = -5 points

For the game, minus (-)
means that points
will be taken away.

300

define hit points

change size by points

change score by points

hit 10

You can make a procedure block called hit and use the
define () hat-type block to define the procedure and add
a parameter called “points”:

The change size by (points) block will change the size of the
sprite.

The parameter value is entered into the parameter field in
the procedure call stack block.

FOR EXAMPLE, you can enter “10” into the hit () procedure
call stack block to give the “points”
parameter the value of 10:

parameter

procedure block

definition
block

301

if thentouching Crystal ?

forever

if thentouching Potion ?

hit 10

hit 5

if thentouching Bat ?

hit -10

if thentouching Lightening ?

hit -5

If you run the hit (10) stack block with a value of 10 in
the points parameter, then the sprite will get bigger on
the stage by 10 percent. It will also add 10 points to your
score variable.

You can add
conditional
statements that
check to see if
the sprite touches
each of the four
items and add
a hit procedure
stack block to
each conditional
statement.

You can enter
a different
parameter value
in each of the hit
procedure stack
blocks based on the
value of the item
touched:

302

when clicked

forever

create clone of myself

wait 0.1 seconds

CLONING MACHINE

CLONING
 CLONING a sprite is when
you make copies of it. The
clone blocks are found in
the Control category of the
Blocks menu.

FOR EXAMPLE, if you wanted to make it rain on the
stage, instead of creating hundreds of individual raindrop
sprites, you could clone a single raindrop sprite hundreds
of times.

To do this, you need
two scripts.

Script 1 creates the clones
of a sprite. You can use a
loop to continually make
new clones forever:

SCRIPT 1

303

when I start as a clone

go to x: pick random -240 to 240 y: 170

repeat until touching edge ?

change y by -5

delete this clone

If you run Script 1 alone, it will create a bunch of clones of the
sprite, but the clones won’t be programmed to do anything.

Script 2 programs the sprites to act like raindrops, falling
from the sky and disappearing when they hit the ground.

 The when I start as a clone event hat block runs for
each new clone that is created.

The pick random () to () block makes each raindrop start
in a random location on the x-axis. You can also make
the raindrop start at the top of the screen by setting
the location on the y-axis. To set the location, add the
go to x: () y: () block and add the pick random () to ()
block and all the parameters.

SCRIPT 2

304

OMG, IT’S
RAINING

CATS!

Add a repeat until loop to animate the sprite to fall until
it hits the ground.

Use the change y by () block and a -5 as its parameter
value to make the raindrop move down the screen
toward the ground.

Delete this clone will delete the clone once it reaches
the ground.

There is a 300-clone limit to Scratch programs. Once you
reach the maximum on the screen, no new clones will be
made. But because you are deleting your clones once they
hit the ground you won’t exceed the 300-clone limit.

305

define procedure number or text boolean

procedure

define procedure number or text boolean

procedure

BLOCKS AND THEIR FUNCTIONS

My Blocks
The My Blocks category is different from all the other
categories because you can create an unlimited number of
new blocks. For each new block you create, a new define ()
hat block and *new block name* stack block appear in the
category menu.

Note: Blocks in the My Blocks category appear only after
a new procedure block has been made.

Define (): A hat block that defines a new procedure block along with
specified parameters

New block name: A stack block that is used to call, or run,
the corresponding procedure. When this block is run, the code
underneath the corresponding define () block is run.

306

w

ARE YOU
A CLONE?

answers

 1. If you want to make a bunch of copies of a sprite,
which blocks should you use?

 2. How is making a new block different from just using
a loop block?

 3. Why should you delete a clone when you are done
using it?

 4. Why is making a new block better than copying and
pasting code?

 5. When a new clone is made, what script does it run?

307

 1. Clone blocks

 2. Loop blocks repeat the same chunk of code multiple times
in a row, while new blocks that you make can be used in
different locations. You can also add different inputs to
slightly change the way the block works.

 3. There is a 300-clone limit, and once you reach the limit,
no new clones will be made.

 4. Good programmers don’t copy and paste code. Efficient,
concise code is better because it is easier to write,
debug, and reuse.

 5. Clones run whatever script is attached to the
when I start as a clone block.

308

Unit

Programming
in Python

7
309309

Chapter 24
GETTING
STARTED

WITH PYTHON
INTRODUCING PYTHON
Python is one of the most widely
used and easy-to-learn
programming languages,
which makes it popular for
beginners. It can be used for
many types of projects, ranging
from designing websites to
examining large amounts of data.

I’M SO
POPULAR.

310

Python comes with many useful built-in FUNCTIONS, or tools,
including:

math functions like basic operations, square root,
and choosing a random number

options for drawing graphics

user-friendly menus and buttons

IDLE
Python code is written in an INTEGRATED DEVELOPMENT
 ENVIRONMENT PROGRAM (IDE) like IDLE (Integrated
Development and Learning Environment), the one that comes
with Python when you install it.

The program IDLE is
installed along with
Python. It has two
different windows: the
 SHELL WINDOW and
the EDITOR WINDOW .

INTEGRATED
DEVELOPMENT

ENVIRONMENT (IDE)
A program that programmers use
to type out and edit code and to

create Python programs

311

The shell window is the window that
appears when you open IDLE. On the
screen you’ll see “>>>,” which shows
you where to start typing.

To run code in the shell window,
type it in next to the prompt and
press enter. The OUTPUT of
your code will appear on the line
below. Or, if your code doesn’t run
properly, an error message will appear.

FOR EXAMPLE, you can type in the code print(“Hello,
World!”) and your output will be “Hello, World!” like this:

The shell window is great for
running small pieces of code,
but isn‘t good for writing
whole programs because you
can’t save your work.

OUTPUT
The result of the code;

what you see after
the code has run

Shel l window

>>> TY PE HERE.

The >>> symbol is
called the prompt.

312

YOU CAN
CALL ME .PY

The editor window is for writing out whole programs
that are saved as files. The editor window starts out as
a completely blank, untitled file. Python files end in .py,
and you can save them anywhere on your computer.
An example of a Python file name would be
firstproject.py.

When working in Python:

name the file something that ’s
related to your project

save it somewhere that
you’ll remember

save your work often

This is a file extension.
It names the format of a file.

Saving Files tip
Create a new folder called “Python_Projects”

inside your “My Documents” folder to save all your
Python project files. This will help you stay organized

and help you remember where to find your work.

313

CODE
Instructions must be writ ten using
code. All parts of the code have to be
writ ten according to the rules of the
Python programming language.

Python comes with built-in functions
(a section of code that performs a
specific task). One of the functions
is called print. The print function
print() will display in the shell
window the text that you add as
a PARAMETER VALUE .

Hello, Python
“Hello, World!” is one of the most basic programs you can
write in any computer language. The “Hello, World!” program
can be made in Python by calling the print function and
typing “Hello, World!” as the parameter value like this:

print("Hello, World!")

The rules for
writing programs
are called syntax.

PARAMETER
VALUE

The text put within
the parentheses of

a function

Function name Parameter value

Parentheses

314

The print() function tells
the computer to display the
parameter value.

KEEPING
ORGANIZED
 COMMENTS in
your code are lit tle
notes to yourself and
other programmers.
Comments aren’t run
as part of the program
but can be read by

To call a function means
to instruct the computer to

use that specific tool.

Be very careful when
typing out your code. If
words are misspelled,
your program may not
run properly. Do not add
extra spaces or symbols.
Capitalization also
matters. For example,
entering “Print” instead
of “print” won’t work.

MY COMPUTER
IS PICK IER ABOUT
SPELL ING THAN

MY ENGLISH
TEACHER!

BULLETIN BOAR D

BOOP!

315

I’M HELPFUL
AS WELL AS
POPULAR.

anyone reading your code. They act like sticky notes
and can help organize your thoughts. Comments can be
reminders, explanations about the code, and questions.

To make a comment in Python, use either the # symbol for
a one-line comment or three quotation marks-single (‘ ’ ’) or
double (“ ” ”)-for multiple lines.

Comment on one line

'''Multiline

comment can take

many rows.'''

Single-line comments use the
only at the beginning, but

multiline comments open and
close with the quotation marks.

316

Helpful Colors
Both the shell and editor windows automatically change the
color of your text to help you read your code.

Purple is for built-in functions. For example, print() is a
built-in function.

Orange is for key words that have special meaning, like “if”
and “True.”

Green is for all text that appears in quotation marks.
Double or single quotation marks can be used as long as
they match-in other words, don’t start with single quotation
marks and end with double quotation marks.

Blue is for the output text from when the program runs.

Red is for error messages that appear when the program
doesn’t run properly.

Black is for all the rest of the text in the program.

317

w

 1. Why do the shell and editor windows automatically
change the color of your text as you type?

 2. What does the IDLE program do? Why is it helpful?

 3. Write in the blank which window you should use for each
of the following:
A. You want to write a large program in Python.
B. You want to save your work.
C. You want to quickly run a small piece of code.

 4. Match each color in the left column with what it
represents in IDLE in the right column.

A. Output Purple

B. Text inside quotation marks Orange

C. Key words Green

D. Error Blue

E. Built-in function Red

318

 5. Python (is/is not) a programming language used by
professionals to create popular programs like YouTube
and Google.

 6. Why would you want to put comments in your code?

 7. Which function should you use to display text in the
shell window?

 8. Draw the symbols around the text below to turn the
sentences into a one-line or multiple-line comment.

Make this a one-line comment.

Make this a
multiple-line comment.

answers 319

 1. The colors help you, the programmer, read your
code more easily.

 2. IDLE is used to write and run Python programs. It can be
used to test short snippets of code or run .py program files.

 3. A. Editor
B. Editor
C. Shell

 4. purple: 5 green: 2 red: 4
 orange: 3 blue: 1

 5. is

 6. Comments help you organize your code, and they make
it easier for you or other programmers to understand
what each section of code does without having to read
through the actual code.

320

 7. print()

 8. #Make this a one-line comment.
 ‘ ‘ ‘Make this a
 multiple-line comment.’ ’ ’

Or, you can also use double quotation marks:
 “ “ “Make this a
 multiple-line comment.” ” ”

321

I WEAR
COLOR WELL,

DON'T YOU
THINK?

322

Chapter 25
VARIABLES
IN PYTHON

 VARIABLES are used to store information. Storing
information is useful when you want to reuse that
information many times or use it at different times while
running a program. They save you from entering the same
block of code over and over.

In Python, the basic DATA TYPES
that can be stored by variables
include:

strings
integers
lists
Boolean values

DATA TYPE
The kind of value

the data is

323

Variables can store values
(content or data), like a STRING ,
number, LIST , or BOOLEAN .

USING VARIABLES
To assign a value to a variable,
use this format:

identifier = value

The IDENTIFIER is the name of
the variable.

FOR EXAMPLE, in a game where the player gets three
lives, you could name a variable “lives” and assign it a
value of 3:

lives = 3

IDENTIFIER

VALUE In Python, the “=” sign
means is assigned to.

Read “lives = 3” as
“3 is assigned to lives.”

STRING
A data type that
represents text

BOOLEAN
A data type that

represents either
“True” or “False”

LIST
An ordered sequence

of values

324

After creating the variable and assigning it the value of 3,
you can reuse the lives variable throughout the program.

Rules for Naming Python Variables
When coming up with the variable identifier, or name, you
must follow these rules:

GOOD

* Use numbers, uppercase letters, lowercase
letters, and underscores (_).

* Start the identifier with a letter.

* Keep your identifier short and simple, and
have it describe the variable it ’s used for.

Mice_4Score

lives

325

When coming up with the variable identifier, or name, do not
do this:

BAD

* Include spaces or symbols (like -, /, #, and @).

* Use key words that already mean something else
in Python (like “print”).

* Use the capital letters O or I or a lowercase l,
because those can get confusing-a capital O
looks like the number 0.

* Start your variable with a number or symbol.

Key words in Python (not allowed as identifier names):

and
as
assert
break
class
continue

def
del
elif
else
except
exec

finally
for
from
global
if
import

in
is
lambda
not
or

pass
print
raise
return
try

while
with
yield

326

When naming a variable, try to describe what it is.

FOR EXAMPLE, while you could name a variable for
storing the number of lives a player has “j,” you might
forget what “j” means after you add in many more
variables.

But if you name the variable “lives,” you’ll remember that
the variable stores the number of lives for the player.

Also, keep variable names short; longer names lead to more
typos and wasted time typing out the extra characters.

FOR EXAMPLE, although a variable called the_number_of_
lives_the_player_has_left describes the data it stores, it ’s
better to shorten it to just lives.

327

Formatting Variable Names
Programmers often use NAMING CONVENTIONS to make
their code easier to read. A naming convention is a format
for naming things like variables. Python will run correctly no
matter which naming convention you pick. However, it ’s best
to stick to one way in order to make your code easier to read.

Common naming conventions include:

DESCRIPTION EXAMPLES

Single lowercase letter x

Single uppercase letter X

All lowercase treasure

Lowercase and underscores x_position

All uppercase CAPTAIN

For Python, many people prefer to use
lowercase_and_underscores when naming variables.

328

camel
Case

Uppercase and
underscores

SHIP_NAME

Capitalized words
(Pascal case)

JollyRoger

Mixed case (camel case) buriedTreasure

Capitalized words with
underscores

Polly_Want_A _Cracker

Capitalize the first letter
of every word in the name.

Capitalize only the
first letter of the
second word in a
name. Think of it like
a camel ’s hump in the
middle of the name.

329

w

 1. Declare a variable called winning_number and give it
a value of 1001.

 2. Which of these are NOT allowed as Python variable
names?
A. @UserName
B. handle
C. Num_posts
D. FriendCount

 3. In Python, what does the “=” symbol mean?

 4. Write a two-word variable using camel case.

 5. Why might it be a good idea to stick with the same
naming convention in a program you’re making?

330

 6. What’s wrong with the following variable name?
date/Time

 7. What ’s wrong with using the following variable name?
continue

 8. What’s wrong with the following variable name?
l0O1Il

answers 331

 1. winning_number = 1001

 2. A

 3. It means “is assigned to.”

 4. One answer would be: exampleVariable

 5. Using the same naming convention will help you stay
organized and make your code easier to read because
all your variables will follow the same format.

 6. Python does not allow slashes in variable names.

 7. “continue” is a key word in Python. Key words are
reserved and cannot be used as variable names.

 8. It ’s hard to read because the 1s, 0s, Os, Is, and ls look
similar.

332

Chapter 26
STRINGS

 STRINGS are a group of sequenced characters within
either single or double quotation marks. You use strings to
show messages or text on-screen
in your program. When Python
sees quotation marks around text,
it reads it as a string.

FOR EXAMPLE: These are all strings because they are
surrounded by quotation marks:

“Game Over”

‘time: 1:06’

“Lives left:”

“Welcome LOL. Can I tell you a joke?”

333

Don’t mix single and double quotes.
For example, ‘board game night”
doesn’t work.

To assign a variable the value of
a string, name the variable, add
the assignment operator (the equal
symbol), then add the string in
quotation marks.

FOR EXAMPLE, for a joke-telling program, we can name
a variable “welcome,” add the assignment operator, then add
the value “Welcome LOL. Can I tell you a joke?” like this:

welcome = "Welcome LOL. Can I tell you a joke?"

USING THE PRINT FUNCTION
WITH A STRING
To display the value of a variable using the print function:

First assign the variable a value.

welcome = "Welcome LOL. Can I tell you a joke?"

334

Then type the name of the variable inside the
parentheses of the print function.

print(welcome)

This will make the shell window display the welcome
message:

Welcome LOL. Can I tell you a joke?

IMPORTANT: if you used quotation marks around the
variable name, like in the code below, the result would be
different.

welcome = "Welcome LOL. Can I tell you a joke?"

print("welcome")

This will make the shell window print: welcome

When you put text in quotation marks, Python recognizes it
as a string instead of a variable. So instead of looking up
the variable value, it just prints out the word “welcome” as
a string.

FUNCTION

VARIABLE

quotation marks included

335

SMACK!

Displaying Text on Multiple Lines
To make a string automatically display on multiple lines, use
three single quotation marks (' ' ') and type the text on new
lines the way you want it to appear.

FOR EXAMPLE:

joke = '''I was wondering why the ball

kept getting bigger and bigger,

and then it hit me.'''

print(joke)

This will print:
I was wondering why the ball

kept getting bigger and bigger,

and then it hit me.

The output will have the same
line breaks that were entered
in the string.

336

Changing the Value of
a String Variable
You can change the value of a variable by adding another
line of code that assigns the variable a new value in the
same way you assigned the original value.

FOR EXAMPLE, to replace “LOL” with “meh”:

reaction = "lol"

Value of reaction: lol

reaction = "meh"

Value of reaction: meh
“meh” replaces “lol” as the value of reaction.

print(reaction)

New value of reaction: meh

This will print: meh

The example prints “meh”
because that was the latest
value of reaction.

Once the value of a variable is changed,
the old value is gone for good.

337

FORMATTING STRINGS
You can style strings so that they include the same type of
punctuation and presentation as regular typed text.

Quotation Marks
All strings have quotation marks around them. So if you
want to put quotation marks inside your string, you’ll need
to ESCAPE the interior quotation marks by placing a
backslash (\) before each of them.

FOR EXAMPLE:

tornado_joke = "What do you get if you say \"tornado"\ ten

times backward and forward? . . . A real tongue twister!"

print(tornado_joke)

This will print:
What do you get if you say "tornado" ten times backward and

forward? . . . A real tongue twister!

BACKSLASH

When you escape a character, you are telling
Python to treat that character as part of

the string instead of as a special character.

338

“ ”

EXCEPTION! If you use single quotation marks at the
beginning and end of your string, then you can use double
quotation marks as part of your string without needing to
escape them. (Or, if you use double at the beginning and end,
you can use single as part of the string.)

FOR EXAMPLE, you could assign the tornado_joke variable
the following value and get the same result as before:

tornado_joke = 'What do you get if you say "tornado" ten

times backward and forward? . . . A real tongue twister!'

But you should still know how to escape characters in case
you need to use both single and double quotation marks or
other characters in a string.

339

Line Breaks
To print on a new line, use an escaped “n” like this:

print("\n")

FOR EXAMPLE, you could break up the lines of a joke to
emphasize the punch line:

print("I had a talking parrot.\n But it didn't say it was

hungry,\n\n so it died.")

This will print:

I had a talking parrot. But it

didn't say it was hungry,

so it died.

HEY,
NOT COOL!

340

MULTIPL ICATION
OPERATOR

OPERATORS
 OPERATORS are symbols
that represent actions that
manipulate values. Many
operators come from math.

You can use operators with strings as well as numbers.

FOR EXAMPLE, to say “Hello!” 3 times, you could use:

print("Hello!" * 3)

“Hello!” * 3 means “Hello!” × 3

This would print: Hello!Hello!Hello!

To add space between each “Hello!” add a space at the end
of the string:

print("Hello! " * 3)

This will print: Hello! Hello! Hello!

HELLO,
OPERATOR? HELLO!

* is a mathematical operator that represents multiplying.
+ is a mathematical operator that represents adding.

SPACE

341

String Addition
Operators can also be used to add strings together to make
a sentence.

FOR EXAMPLE:

part1 = "Why did the chicken cross the road? "

part2 = "To get to the other side."

print(part1 + part2)

This will display: Why did the chicken cross the road? To get
to the other side.

Another way to add strings together is by creating a new
variable that is the sum of two other variables.

part1 = "Why did the chicken cross the road? "

part2 = "To get to the other side."

whole_joke = part1 + part2

This would assign the variable
whole_joke the value of
Why did the chicken cross

the road? To get to the other side.

SPACE

342

Addition operators can combine both variables and strings
into a new string variable value like this:

animal = "alligator"

joke = "Why did the " + animal + " cross the road?"

print(joke)

The spaces around the + signs make the code easier to read.
Because they aren’t part of a string, the computer ignores
them. You could also correctly type this:

"Why did the "+animal+" cross the road?"

and it would display the same thing:

Why did the alligator cross the road?

Variables are helpful because they
can change values, making programs
more flexible.

343

Sometimes you want a user to input information.

The input() function displays the text you add between the
parentheses and waits for the user to type something.

input("add your text here")

The shell window will display “add your text here”
and wait for the user to type something in the window
and press enter.

You can save the information the user types in the shell
window to a variable.

To do this, before the input function, type the name of
the variable you want to use and also add the assignment
operator:

variable = input("add your text here")

Variable that wil l s tore the user’s answer

Your text or question to display for the user

344

The program wil l ask the question, then wait for
the user to type in their answer and press ENTER .

After the user inputs their answer, this line wil l print
using the information stored in the “animal” variable.

This part is the answer the user entered.

FOR EXAMPLE, you can use the input() function to ask
the user to give a new value to the “animal” variable from
the joke example:

animal = input("What's your favorite animal? ")

joke = "Why did the " + animal + " cross the road?"

print(joke)

What's your favorite animal? Alligator

Why did the Alligator cross the road?

String Functions
Python has built-in functions that change strings in
helpful ways. There are functions to capitalize the first
letter of a word or sentence, join multiple strings into

345

a single string, convert a string to all lowercase letters,
replace part of a string, format a string into a nicer-looking
output, and more.

 STRING FUNCTIONS help change data into a more
usable format. For example, if you ask a user what their
favorite animal is and they type “ALLIGATOR” in all caps,
the lower() function can change all the capital letters to
lowercase.

Use string functions by using this format:

variable.function()

If you have a variable called “animal” and you want to
make sure the value is in lowercase, use the lower() function
on the name variable:

animal.lower()

You can use the string functions along with a string almost
anywhere in a program.

VARIABLE

FUNCTION

346

Examples of different placements of the lower() function:

animal = input("What's your favorite animal? ").lower()

print("Why did the " + animal + " cross the road?")

animal = input("What's your favorite animal? ")

animal = animal.lower()

print("Why did the " + animal + " cross the road?")

animal = input("What's your favorite animal? ")

print("Why did the " + animal.lower() + " cross the road?")

All three examples will print the same output:
Why did the alligator cross the road?

Some of the Most common String Functions

capitalize(): Changes the first letter to uppercase and the rest
to lowercase

lower(): Changes all uppercase letters to lowercase

swapcase(): Changes capital letters to lowercase and lowercase
letters to capital

upper(): Converts lowercase letters to uppercase

347

w

 1. Which of these is NOT a string:
A. “string cheese”
B. ‘shoelace’
C. “She said, \“keep pulling the thread\””
D. 5 + 9

 2. What will the Python code below print?
art = "painting"

print("my favorite kind of art is: " + art)

 3. Explain how to make a string print on multiple lines.

 4. If you want to ask a user their favorite color, what
would be a good function to use? How would you
write it?

 5. What does it mean to escape a quotation mark in
a string?

 6. What code could you add as input to the print function
below so that it prints on a new line?

print()

348

 7. What will the following code print?

flavor1 = "chocolate"

flavor2 = "strawberry"

flavor3 = "vanilla"

print("My favorite sundae has these 3 flavors: " +

flavor1 + ", " + flavor2 + ", and " + flavor3 + ".")

 8. Suppose you want to ask a user to input their dog’s
name, which you store in the variable “dog.” You also
want to capitalize the first letter of the dog’s name.
Which of the following will NOT capitalize the dog’s
name?
A. capitalize() = dog
B. dog = dog.capitalize()
C. dog = input("What’s your dog’s name?").capitalize()
D. print("Your dog’s name is: " + dog.capitalize())

answers 349

 1. D

 2. my favorite kind of art is: painting

 3. You can surround the string in three single quotation
marks (‘ ’ ’) and enter the text on new lines in the way you
want it to appear. Or you can insert “\n” wherever you
want a new line to start.

 4. The input function, writ ten like this: input(“What ’s your
favorite color?”)

 5. When you escape a quotation mark, you are making
it part of the string instead of using it as a special
character to mark the beginning or end of a string.

 6. “\n”

 7. My favorite sundae has these three flavors: chocolate,
strawberry, and vanilla.

 8. A

350

Chapter 27
NUMBERS AS
VARIABLES

Variables can also be numbers. When assigning a number
value to a variable, DO NOT surround the number with
quotation marks.

number = 5

string = "five"

string = "5"

CALCULATIONS WITH
NUMBER VARIABLES
In Python, you can use numbers to
calculate math problems. For example, you
can create a homework helper program
where Python does the calculations.

A number can be a string
if you surround it with
quotation marks. But you
can’ t do math with a string.

351

You can make two number
variables, add them together,
and then print the sum
like this:

num1 = 4

num2 = 5

sum = num1 + num2

print(sum)

This will print: 9

NUMBER TYPES
Python uses different types of numbers. Two of those types
are INTEGERS and FLOATS .

Integers
In Python, integers are positive or negative whole numbers
that don’t use a decimal place.

You can create a variable called “num1” and assign it an
integer value of 3:

num1 = 3 A whole number

Remember to assign the
values of “num1” and “num2”

before you use them in a
calculation for “sum.” You

can’t use variables until after
you assign them values.

352

String variables, even if they have whole numbers inside
them, aren’t recognized by Python as integers.

FOR EXAMPLE, when you add two strings together, they
are combined as one string:

num1 = "4"

num2 = "3"

sum = num1 + num2

print(sum)

This will print 43, which is the string 4 and the string 3
combined into a single string.

Sometimes it ‘s necessary to convert a variable to an integer
data type.

FOR EXAMPLE, if you ask a user to enter a number using
the input() function, Python stores their answer as a string.

width = input("Enter the rectangle's width. ")

height = input("Enter the rectangle's height. ")

In the program above, if the user entered 5 and 8, the numbers
would be stored as strings-"5" and "8"-and not as integers.

Quotation marks around the
number means it ’s a string.

353

Convert the user’s answers from strings to integers using the
int() function. You can then perform calculations with them.

Multiply the length and width of
a rectangle to find the area like this:
width = input("Enter the rectangle's width. ")

height = input("Enter the rectangle's height. ")

width = int(width)

height = int(height)

print(width*height)

Floats
Floats (or floating point numbers) are numbers that have a
decimal point.

FOR EXAMPLE, the values to these variables are floats:

num1 = 3.3

num2 = 6.0

num3 = 2.9564576

Width and height
start out as strings.

Width and height are
reassigned as integers.

The number values for width and height can now be
used in calculations, such as finding the area.

FLOATS

354

To convert a variable value from an integer or string to
a float, use the float() function like this:

num1 = 6

num1 = float(num1)

sum = num1 + 3.3

print(sum)

num1 starts out as an integer.

num1 is reassigned as a f loat.

Calculations with a f loat keep the digits
to the right of the decimal point.

Will display: 9.3 (the sum of 6.0 + 3.3)

Number Conversion

int(): Converts a value to an integer. Useful for converting a
user’s input string into an integer to do math.

float(): Converts a value to a floating point number (number
with a decimal point). Useful when you are using values that
are not whole numbers.

355

MATHEMATICAL EXPRESSIONS
Numbers and math are used in programming to represent
the location of a character in a game, calculate dates,
set timers, display colors,
calculate scores, and
more. VALUES and
 OPERATORS combine
to make EXPRESSIONS .

EXAMPLES OF
EXPRESSIONS:

4 * 3
3 / 4 * 5 - 5 / 2
(7 * 3) - (5 - 7) / (4 + 5)

Variables can also hold
number values and be used in
mathematical expressions. For
example, if a variable called “x”
holds the value of 4, it can be
used in an expression:

x + 6 Because x holds the value 4, this expression
evaluates to 10.

EXPRESSION
A combination of values and

operators that can be evaluated
to a single value. For example,

2 + 3 is an expression that
evaluates to (or equals) 5.

2 + 3

VALUES

OPERATOR

VALUE
A piece of information.

In mathematical
expressions, values

are numbers.

356

There are seven common math operators:

NAME SYMBOL EXAMPLE

addition + 5 + 2

subtraction - 5 - 2

multiplication * 5 * 2

division / 5 / 2

modulus % 5 % 2

exponent ** 5 ** 2

floor division // 5 // 2

The symbols “x” and “÷” are not used in Python.

The remainder
portion of
a quotient.
For example,
5 ÷ 2 = 2 with
a remainder, or
modulus, of 1.

Divides two numbers and ignores the remainder.
For example, 5 ÷ 2 = 2 (the remainder, 1, is ignored).

357

ORDER OF OPERATIONS
Use the ORDER OF OPERATIONS
when solving equations:

1. Solve any parts of the equation that
are inside brackets or parentheses.
If there is more than one set of
parentheses, solve the innermost
equation first.

2. Calculate exponents, absolute value, and square roots
from left to right.

3. Solve all the multiplication and division from left to right.

4. Complete the addition and subtraction from left to right.

ORDER OF
OPERATIONS
A set of rules for

deciding the order
that operations

will be evaluated

Parentheses can be nested. This means that there can be one set
of parentheses inside another set, like this: ((2 + 18) * 5) /10.

The innermost equation is 2 + 18 and should be solved first.

To remember the order of operations, think “Please Excuse
My Dear Aunt Sally,” or PEMDAS (Parentheses, Exponents,

Multiplication, Division, Addition, Subtraction). But be careful,
because PEMDAS isn’t foolproof. For example, you should do
subtraction before addition if you’re calculating from left to

right—and the same goes for division and multiplication.

358

FOR EXAMPLE, to evaluate the expression 2 * (6 - 3):

First, solve the equation in parentheses: 2 * (6 - 3)
 2 * (3)

Then, multiply to get your answer: 2 * 3 = 6

If you have the same expression
without the parentheses . . . 2 * 6 - 3

First, multiply: 12 - 3

Then, subtract to get your answer: 12 - 3 = 9

Even though they contain the same numbers, the two
equations have different answers because of the order
of operations. Python will always follow the order of
operations when it returns a value.

Printing Mathematical Expressions
If an expression is inside the print function, then Python
will print the value of the expression to the shell window.

FOR EXAMPLE:
print(5 * 3) This will print: 15

2 * 6 = 12

6 - 3 = 3

359

w

 1. In Python, what does the ** operator do?

 2. To find the remainder of a division, you would use the
 operator.

 3. What will each expression return?
A. 5 // 4
B. 3 * (5 + 2) - 6
C. 2 * 5
D. 4 / 2
E. 6 % 2
F. 6 / 3 + (2 - 1) + 2 * 3

 4. Write out the code to print the answer to 5 times 2.

 5. In the correct order of operations, which comes first:
exponents or addition?

 6. What is an expression?

360

 7. In mathematical expressions, values are always
(numbers / symbols).

 8. If you want to find the whole-number value of a
division operation without the remainder, you should
use the operator.

 9. What will the following code print?

width = 4

height = 12

perimeter = width * 2 + height * 2

print(perimeter)

 10. Where is the error in this program?

dog_years = human_years * 7

human_years = 3

print(dog_years)

 11. What ’s the difference between an integer and
a float variable?

More questions 361

 12. Will the following program print an integer or a float
number?

d = 4.2

t = 3

speed = d / t

print(speed)

 13. What function should you use to convert a variable
to an integer?

362

 1. ** is used as the exponent operator.

 2. Modulus or %

 3. A. 1
B. 15
C. 10
D. 2
E. 0
F. 9

 4. print(5 * 2)

 5. Exponents

 6. An expression is the combination of values and
operators that can be evaluated to a single value.

 7. Numbers

 8. Floor or //

 9. 32

More answers 363

 10. The problem is “human_years” is assigned the value of 3
after it is used in the first line (human_years * 7).

 11. An integer is a whole number that does not have a
decimal, and a float is a number that has a decimal.

 12. Float, because “d” is a float and used to calculate “speed”

 13. int()

364

Chapter 28
LISTS AND
BOOLEAN

EXPRESSIONS
LISTS
A LIST is a variable that stores multiple values. This is
useful when you have several pieces of information that
you want to store in one place. Lists can store all types of
values including numbers, strings, and other lists.

In Python, lists are formatted using square brackets (and
sometimes quotation marks), with a comma between each item.
For example, we can make a list called “fruits” and assign it
the values apples, bananas, grapes, oranges, and pears:

fruits = ['apples', 'bananas', 'grapes', 'oranges', 'pears']

L IST NAME L IST ITEMS

365

Think of a list as a row of boxes, where each box holds a
value. Every box on the list gets a number, starting with 0.
This number is called the INDEX .

The index is used to find or change specific values, or items,
within the list. In the fruit example, apples is located at
index location 0, and the index location of pears is 4.

A specific item in a list is located using the format list[#],
where “list” is the name of the list and “#” is the index
location of the item.

So, fruits[0] is apples and fruits[4] is pears.

Note: Each item is separated by a comma, but make sure
the commas are on the outside of the quotation marks

so they are not included as part of the string.

0 1 2 3 4

list

index

366

To display the second item of the fruits list, use the print
function, enter “fruits” as the name of the list, and “1” for
the index location of the item:

print(fruits[1])

This will print: bananas

You can also print out a section of the list by naming the
range of indexes to print, like this:

print(fruits[1:4])

This will print: ['bananas', 'grapes', 'oranges']

Because the index starts at 0, the
second item has an index of 1.

ending index

starting index

The ending index (4: pears)
is not included.

367

There are lots of different ways
to update a list.

You can replace an item in a list
after the list has been created.

To replace a value of an item within a list,

1. reference (name) the index location
2. reassign the value

To replace grapes with kiwi: ['apples', 'bananas',
'grapes', 'oranges', 'pears']

The index location of grapes is 2. You can replace grapes
by assigning index 2 of the fruits list to kiwi:

fruits[2] = "kiwi"

The list is now: ['apples',
'bananas', 'kiwi', 'oranges',

'pears']

When you use print() to display more than one item in a list,
the output will include the brackets and quotation marks.

That’s because you’re printing a list, not just items in a list.

The last item isn’t listed—
only the items up to the

ending index position are
included in the list.

GET OUTTA
HERE!

368

To add an item to the end of
a list, use the append() function.

If the list of fruits was a shopping list, the append()
function would add items to the end of it.

You can add “cherries” to the list by applying the append
function to the fruits list like this:

fruits.append("cherries")

The list is now: ['apples', 'bananas',
'kiwi', 'oranges', 'pears', 'cherries']

To insert an item between two other
values in a list, use the insert() function.
Inside the parentheses, tell the
function where to insert the new
value and what the value should be.

Add “peaches” to index location 2 of the fruits list using
the insert() function like this:

fruits.insert(2, "peaches")

Commas are
added automatically
when you add new

items to a list.

Append means
“to add”

value to insertnew item index location

369

MAKE
ROOM!

I'M
OUT!

ME
FIRST

The list is now: ['apples', 'bananas', 'peaches', 'kiwi',
'oranges', 'pears', 'cherries']

To remove an item from a list, use the remove() function.
Inside the parentheses, tell the function which item you
want removed by entering the value (the name of the
item, not the index number):

fruits.remove("kiwi")

The list is now:
['apples', 'bananas',

'peaches', 'oranges',

'pears', 'cherries']

To sort a list,

• use either the sort() function, which will put the
list in numerical or alphabetical order (A-Z), or

• use the reverse() function, which will put the
list in reverse order.

fruits.sort()

orders the list to: ['apples', 'bananas',
'cherries', 'oranges', 'peaches', 'pears']

370

GIMME
THAT!fruits.reverse()

orders the list to:
['pears', 'peaches',

'oranges', 'cherries',

'bananas', 'apples']

To get the number of items in a list, use the len() function:

fruits = ['pears', 'peaches', 'oranges', 'cherries',

'bananas', 'apples']

fruit_length = len(fruits)

print(fruit_length)

prints: 6

To add one list to the end of another list, use the “+”
operator:

fruits = ['apples', 'bananas', 'kiwi']

vegetables = ['carrots', 'peas', 'onions']

produce = fruits + vegetables

print(produce)

prints: ['apples', 'bananas', 'kiwi', 'carrots', 'peas',
'onions']

(Put the name of the lis t
inside the parentheses.)

Give the new variable (the
combined lis t) a name.

371

Lists Within Lists
A list can be set within another list. The second list is
called the INNER LIST . You can use this list to show a
subcategory-a more specialized group. The format for
making a list within a list is a second set of brackets
within the first:

list = ["A", "B", "C", ["D1", "D2", "D3"], "E"]

List functions

list[#]: References a specific item in a list, where “#” is the
index number of the item and “list” is the name of the list

append(“item”): Adds an item to the end of a list

insert(#, “item”): Inserts an item in a specific index
location in a list

remove(“item”): Removes an item from a list

sort(): Sorts a list by numerical or alphabetical order

reverse(): Sorts a list by reverse order

len(): Provides the number of items found in a list

Outer lis t Outer lis t continued

Inner lis t, stored in fourth item location of outer lis t

372

FOR EXAMPLE, to list favorite apples within the list of
favorite fruits:

1. enter the opening bracket

2. add the types of apples in quotation marks,
and end with a closing bracket

3. continue with the rest of the list

fruits = ["bananas", ["Gala", "Empire", "McIntosh", "Golden

Delicious"], "kiwi", "oranges", "pears"]

The list of apples is stored as the second item of the fruits list.

To print just the favorite apples (the inner list) from the list
of favorite fruits, use the print function with the second
item (index location 1) of the favorite fruits list:

print(fruits[1])

prints: ["Gala", "Empire", "McIntosh", "Golden Delicious"]

Outer lis t Inner lis t

Inner lis t Outer lis t continued

2nd item

list name

373

You can print a single apple name by using the index location
1 to reference the list of apples and then adding the index
location of the specific apple.

For example, to print “McIntosh” off the inner list of apples,
use this code:

print(fruits[1][2])

prints: McIntosh

BOOLEAN EXPRESSIONS
In programming, it ’s very common to want to know if
something is true or false. For example, in a game we want
to know if the game is over, or if it is still going, or if a user
got a question right or wrong.

Python automatically detects a Boolean-type variable when
the value is set to “True” or “False,” (a Boolean expression).
When you’re setting a variable to “True” or “False,” make
sure you capitalize the T in True and the F in False. For
example: my_value = True.

Boolean variables are like light
switches. There are only two options:
on or off (True or False).

specific apple

lis t of apples

374

When you assign a Boolean expression to a variable, Python
will set the value to “True” or “False” depending on whether
the Boolean expression is true or false. For example:

height = 58

meet_limit = height > 50

print(meet_limit)

This will print: True

The expression is True because the given height is 58, and
58 > 50, which means that meet_limit is true.

This example shows assigning the variable of test1 to the
Boolean expression 2 is equal to 4, which is false.

test1 = 2 == 4

print(test1)

This will print: False

Assigns “height” the value of 58.

Assigns “meet_limit” the value
of “height > 50.” This means
that a height of greater than
50 wil l be considered true.

Number variables store the answer
to a calculation and not the mathematical expression.

Boolean variables are similar because they store
“True” or “False” as the answer to a comparison

expression instead of the comparison itself.

375

 COMPARISON OPERATORS evaluate information to be
true or false. They compare two values to each other.

Comparison operators are:

SYMBOL MEANING

== is equal to

!= is not equal to

< is less than

Examples of expressions that evaluate to True:

EXPRESSION MEANING VALUE

2 == 2 2 is equal to 2 True

2 != 3 2 is not equal to 3 True

2 < 3 2 is less than 3 True

4 > 3 4 is greater than 3 True

2 <= 2 2 is less than or equal to 2 True

5 >= 3 5 is greater than or equal to 3 True

SYMBOL MEANING

> is greater than

<= is less than or equal to

>= is greater than or
equal to

376

Examples of expressions that evaluate to False:

EXPRESSION MEANING VALUE

2 == 5 2 is equal to 5 False

2 != 2 2 is not equal to 2 False

3 < 3 3 is less than 3 False

2 > 3 2 is greater than 3 False

5 <= 3 5 is less than or equal to 3 False

2 >= 3 2 is greater than or equal to 3 False

377

w

 1. are used to store multiple values.

 2. What function should you use to add an item to the end
of a list?

 3. How can you replace the second item in the list “cars”
with “Porsche”?

 4. What function should you use to add an item between
two existing items in a list?

 5. How do you store a list within a list?

 6. Explain what the sort() function does.

 7. Write the code that would print “bananas” given the list
below:

fruits = ["apples", "bananas", "kiwi", "oranges", "pears"]

378

 8. Which of the following does NOT evaluate to
a Boolean value?
A. True
B. 3 ** 2
C. False
D. 3 > 2

 9. What will the following program print?

score = 3

game_over = score > 5

print(game_over)

 10. What will the following code print?

print(100 == 25)

 11. How is “==” different from “=” in Python?

answers 379

 1. Lists

 2. append()

 3. cars[1] = "Porsche"

 4. insert()

 5. Add a second set of brackets around the list inside another
list. The inner list will take one item spot in the outer list.

 6. The sort() function rearranges the list into numerical or
alphabetical order.

 7. print(fruits[1])

 8. B

 9. False

 10. False

 11. In Python, “==” is a comparison operator that checks
if two values are exactly the same, but “=” is the
assignment operator and assigns a value to a variable.

380

Chapter 29
FOR LOOPS

Python uses different types of
LOOPS to perform different
actions. FOR LOOPS repeat code
a specified number of times.

FORMATTING FOR LOOPS
The for loop follows a very specific format; even the
number of spaces you use on certain lines is important.

Steps for Creating a For Loop:
STEP 1: Enter the key word “for.” For loops always start with
“for” to show that the following code is a for loop.

STEP 2: Name the COUNTER VARIABLE . This variable’s
value increases each time the loop repeats. For example, if
you are using a for loop that loops 10 times, starting with
0 and increasing by 1 each time the loop starts over, the
counter variable will represent 0 in the first run, then 1 in

LOOP
Code used to repeat a

sequence of commands

381

RUN
THE LOOP

FOUR TIMES.

RANGER

the next run, then 2, then 3, and so on, increasing by 1 each
time the loop starts over.

You can name the counter variable anything you want. Many
programmers name their counter variable “i” out of tradition.

STEP 3: Add the key word “in” to show that you are about
to specify how many times the loop should repeat.

STEP 4: Set the number of times the loop should repeat.
Use the range() function to do this. The range function will
count from zero up to, but not including, the number listed in
the function’s parentheses.

382

STEP 5: End the first line of the for loop with a colon (:).

Here’s what a for loop, with a counter variable named i,
counting by 1 from 0 up to 3, looks like:

for i in range(3):

Below the first line of the for loop, add the code to
be repeated.

Indent the code to be repeated by pressing the TAB key
on the keyboard once or by using the space bar to add FOUR
SPACES. In Python, the indent indicates that the code on
that line is part of the code above it. You can add a print

Start with “ for.” Specify how many times
the loop wil l repeat.

Add a colon.Add “in.”

Name the counter variable.

Range() defines where a counter starts, ends, and what number
it should count by. The parameters include (start, stop, step).

The start and stop parameters name the start and stop numbers
for the counter. The step parameter tells how much the counter
should count by. For example, range(4, 13, 4) will count from
4 to 12 (the number before the “stop” number) in increments

of 4; the numbers counted in this range are: 4, 8, 12.

383

function to the loop by starting a new line and indenting it
in the same way.

FOR EXAMPLE, you could add a print function that
displays “Hip hip hooray!”

for i in range(3):

print("Hip hip hooray!")

This will print:

Hip hip hooray!

Hip hip hooray!

Hip hip hooray!

You can add code that runs after the loop has finished running.

To do that, start a new line that ’s not indented, like this:

for i in range(3):

print("Hip hip hooray!")

print("Congratulations")

Insert the code you want repeated.

Indent one tab (four spaces).

Outside the loop

In the loop

384

This will print:

Hip hip hooray!

Hip hip hooray!

Hip hip hooray!

Congratulations

Every time you create a for loop, you also create a new
variable that counts the number of times the loop is repeated.
That means the variable can be used within the repeated code.

In the previous example, the variable “i” was used in the for
loop. Printing the value of “i” before “Hip hip hooray!” shows
how the value increases each time the loop is run:

for i in range(3):

print(i, "Hip hip hooray!")

This will print:

0 Hip hip hooray!

1 Hip hip hooray!

2 Hip hip hooray!

In the display output, the “i” variable value in the first run of
the loop is 0 and the last run shows “i” having the value of 2.

REMINDER: The
range() function
starts counting
at 0 and stops

counting before the
number set in the

parentheses.

385

OOOH

AHHH

The counter variable can be used to count in other ways.

FOR EXAMPLE, you could make a countdown. To do this,
subtract the counter variable from 10, and the computer will
display a countdown from 10 to 1:

for i in range(10):

print(10 - i)

This will print:

10

9

8

7

6

5

4

3

2

1

The range() function is set to 10, but can go as high as you
want it to.

386

2, 4, 6, 8,
WHO DO WE
AP PRECIATE?

You could use the other parameters in the range() function to
count by 2s between 2 and 10:

for i in range(2, 10, 2):

print(i)

This will print:

2

4

6

8

To print every item in a list (like “fruits”) use this code:
fruits = ['pears', 'oranges', 'mangos', 'cherries', 'bananas', 'apples']

for i in range(6):

print(fruits[i])

This would print:

pears

oranges

mangos

cherries

bananas

apples

Start at this number.

End before this number.

Count (step) by this number.

item in lis t

lis t name

387

There’s an easier way to loop through an entire list without
having to know the exact length of the list.

Instead of using the range() function, use the list itself, and
the loop will run the same amount of times as the number
of items in the list. Instead of being a number, the counter
variable value will be set to each item of the list as it steps
through the entire list.

To print every fruit in the “fruits” list, replace range() with
the list name:

fruits = ['pears', 'oranges', 'mangos', 'cherries', 'bananas',

'apples']

for i in fruits:

print(i)

Use the lis t name instead of range().

The variable value of i is the
lis t item, not a number.

388

w

 1. Explain what the range() part of a for loop does.

 2. Which part of a for loop’s code should be indented?

 3. What are two ways to print each item in the
following list?

Seasons = ["Winter", "Spring", "Summer", "Fall"]

Turn the page for question #4

389

 4. Write the output for each of the programs below:

PROGRAM
NAME

PROGRAM RESULT

A for i in range(4):

 print(i)

B for i in range(10):

 print(i * 5)

C for i in range(25, 101, 25):

 print(i)

D

colors = ["red", "blue",

"yellow"]

for i in colors:

 print(i)

print("Those are the primary

colors")

E
multiplier = 4

for i in range(11):

 print(i * multiplier)

F for i in range(7):

 print(i)

390

 1. The range() function defines where the loop
counter starts, ends, and what number it
should count by.

 2. The code that ’s four spaces in, or tabbed, is the part of
the code that runs each time the for loop cycles.

 3. One way:

for i in range(4):

print(Seasons[i])

Another way:

for i in Seasons:

print(i)

More answers 391

 4. Code
results:
A: 0

1
2
3

B: 0
5
10
15
20
25
30
35
40
45

C: 25
50
75
100

D: red
green
blue
yellow
Those are the primary colors

E: 0
4
8
12
16
20
24
28
32
36
40

F: 0
1
2
3
4
5
6

392

Chapter 30
WHILE LOOPS

AND
NESTED LOOPS
WHILE LOOPS
 WHILE LOOPS repeat as long as
the conditional statements within
them are True. A while loop looks
similar to a for loop, but it replaces
the counting portion with a
CONDITIONAL STATEMENT.

While loops always start with the key word “while” followed
by a Boolean expression and then a colon (:). The repeated
code is indented below the first line.

REMINDER:
A conditional

statement runs a
chunk of code only

when a certain
condition is met.

393

You could make a password checker that will continue to loop
until the user types in the correct password. The Boolean
expression checks if the entered password is true. To do this:

Create the variable “password” and
assign it the value None.

password = None

while password != "myPassword1234":

password = input("Enter the password: ")

if password != "myPassword1234":

print("Your password is incorrect.")

print("Correct password. Welcome.")

This while loop
wil l continual ly
loop as long as
the password
entered is NOT
the same as
“myPassword1234”.

“None” is a Python
key word that

means “empty.”
Create the variable “password” before
you use it in the while loop.

The print() function wil l run
after the password variable value
DOES equal “myPassword1234”.

This condition wil l only run
the print() function if the
password variable value is not
equal to “myPassword1234”.

394

Example output:
Enter the password: rememberMe

Your password is incorrect.

Enter the password: CantRemember

Your password is incorrect.

Enter the password: OhNowIDo

Your password is incorrect.

Enter the password: myPassword1234

Correct password. Welcome.

The program will continue the loop and prompt the user to
enter the password until the user enters “myPassword1234”.
When that happens, the loop ends and the rest of the program
(printing “Correct password. Welcome.”) is allowed to run.

Infinite Loops
In Python, INFINITE loops (forever loops) are while loops
that use a Boolean statement that can never become false.

These are all infinite loops because there is no way for the
Boolean statements in each to become false:

while True:

print("This is the song that never ends.")

while 4 > 3:

print("This is the song that never ends.")

395

I’V E BEEN
 ON THIS THING

FOREVER.

I’M GONNA
PASS OUT.

while "hello" == "hello":

print("This is the song that never ends.")

while 5 <= 5:

print("This is the song that never ends.")

None of these loops provide a way for the conditional
statement to ever become false, so these loops will continue
to loop forever (infinitely). The print() statement in each
example will continuously loop and
print over and over again, forever.

Sometimes you write an infinite loop as part of your
program on purpose. For example, video games usually use
an infinite loop to animate
the characters, continually
updating character movement
and interaction as the player
plays the game. But other
times, an infinite loop may
be writ ten by accident,
and it may crash your

You can exit an infinite loop
by pressing Ctrl + C on Windows,

or command + C on a Mac.

396

computer because the program is too large or tries to get
the computer to process too much information.

NESTED LOOPS
A NESTED LOOP is when one loop is put inside another
loop. They help create more complex repeating code. For
example, you can use a password program as an outer
while loop and nest an inner for loop to print out all the
wrong guesses the user inputs before they guess the
correct password:

password = None

attempts = []

while password != "myPassword1234":

password = input("Enter the password:")

attempts.append(password)

if password != "myPassword1234":

print("Your password is incorrect. You have already

guessed:")

for i in attempts:

print(i)

print("Correct password. Welcome.")

There is an additional indent for the print() function to show
that this code is inside the nested for loop, not the outer
while loop.

Creates a new lis t type variable
and assigns it an empty lis t value

This for loop prints out al l the items
in the attempts lis t (the password
attempts the user has entered).

Adds the user’s
input to the
attempts lis t

397

w

 1. What’s the difference between a while loop and a for loop?

 2. A while loop that uses a conditional statement that will
always be true is called .

 3. What keys do you press to get out of an infinite loop?

 4. Describe how a tab (or 4 spaces) is used in nested loops.

 5. Write a loop that will give the following results.

PROGRAM
NAME

PROGRAM RESULT

A The program will print:
 Go! Go! Go!
as long as the variable “x”
is more than 50.

B The program will print:
 Good morning, Steve
as long as the variable
“name” is equal to “Steve”.

398

PROGRAM
NAME

PROGRAM RESULT

C The program will count
from 7 to 11 by twos 3 times.

D The program will count to 5
over and over again, forever.

E The program will print:
 hip hip hooray
 hip hip hooray
 hip hip hooray

F The program will print:
 1
 2
 3
 4
 5

G The program will print:
hello, friend

 . . . forever, or until the
program is stopped using
Ctrl + C.

answers 399

 1. A for loop runs a set amount of times, and a
while loop will run as long as its condition is True.

 2. An infinite, or forever, loop

 3. Ctrl + C on Windows or command + C on a Mac

 4. Tabs (or 4 spaces) are used to show which loop is inside
the other. An additional tab or 4 spaces shows that the
code is nested inside another inner loop.

 5. Program answers:
A. while x > 50:
 print("Go! Go! Go!")

B. while name == "Steve":
 print("Good morning, Steve")

C. for i in range(3):
 for j in range(7, 12, 2):

 print(j)

Variable names may be different.

400

D. count = True
 while count:

 for i in range(1, 6, 1):

 print(i)

Variable names may be different.

E. for i in range(3):
 for j in range(2):

 print("hip", end=" ")

 print("hooray")

Variable names may be different.

F. num = 0
 while num < 5:

 num = num + 1

 print(num)

Variable name may be different.

G. while True:
 print("hello, friend")

401

999, 1000 LOOPS!
YOU KEEP READING AN D

I'LL KEEP RUNNING!

402

CONDITIONAL STATEMENTS
 CONDITIONAL STATEMENTS in Python always start
with the key word “if,” followed by the Boolean expression
and a colon. The code that runs if the condition is true is
added below the first line and
indented one tab (or four spaces).

Chapter 31
CONDITIONAL
STATEMENTS

Boolean expressions use
==, !=, <, >, <=, and >=.

= = <

>=

if

!=
>

<=
403

FOR EXAMPLE, you can write a program that displays
a message if a game player has reached the expert level.
The code that prints “Skill Level: Expert” will run only if the
xp (experience points) is greater than or equal to 90. If the
xp is less than 90, nothing happens.

xp = 120

if xp >= 90:

print("Skill Level: Expert")

Skill Level: Expert will print because 120 > 90.

Else Statements
An ELSE statement is a statement that runs when the
Boolean value is False. To use the else statement, type “else”
on a new line. Then, on a new line, indent 1 tab (4 spaces)
and add code that will run if the Boolean expression is false.
For example, you could say: If xp is greater than or equal to
90, then display “Skill Level: Expert”, but if the user’s xp is
less than 90, display “Skill Level: Novice.”

Start with “if.”
Add the conditional statement
and a colon after it.

Indent here to show this print() function
is the code to run if xp >= 90.

404

THE CELEBRITY
COUPLE NAME

FOR IF AN D ELSE
WOULD BE EL IF!

xp = 50

if xp >= 90:

print("Skill Level: Expert")

else:

print("Skill Level: Novice")

The example will display “Skill Level: Novice” because
xp is 50, which is not greater than or equal to 90.

Elif
 ELIF is used to combine an else
statement with another conditional
statement to check for additional
information. Elif is used only after
an “if” or another “elif” statement.
Next to elif, add a Boolean expression
and then a colon.

For example, you can add another experience level to the
game by adding an elif statement to the code.

The first condition displays “Skill Level: Expert” if xp
is greater than or equal to 90.

You can add an elif statement to display “Skill Level:
Intermediate” if xp is greater than or equal to 50 and

tel ls what code
should run when the
Boolean expression

is False

405

Start

less than 90. If xp is less than 50, then the else statement
will run the code to display “Skill Level: Novice.”

xp = 50

if xp >= 90:

print("Skill Level: Expert")

elif xp >= 50:

print("Skill Level: Intermediate")

else:

print("Skill Level: Novice")

A flowchart of the program shows
the different branches for each
condition:

xp >= 90? Skill Level: Expert
True

xp >= 50? Skill Level: Intermediate

Skill Level: Novice

True

False

False

WHAT?
YOU’RE STILL
A NOVICE??

406

Compound Conditional Statements
A COMPOUND CONDITIONAL STATEMENT is a
conditional statement that contains two Boolean expressions.
For example, you could make a game where the player gets
bonus points if their score is greater than 50 AND their
difficulty setting is set to “hard.”

 LOGICAL OPERATORS combine multiple Boolean
expressions or values that evaluate to one Boolean value.

Python uses three logical operators:

 AND: If both expressions are True, then the whole condition
is True. If one or both of the expressions are False, then the
whole condition is False.

 OR: If one or both expressions are True, then the condition
is True. It doesn’t matter whether the other condition is True
or False.

 NOT: Switches the expression
to its opposite (from True to
False and False to True).

When we talk or write about
AND, OR, and NOT, we use all
caps; however, within Python

programs, the words are
written in all lowercase.

407

FOR EXAMPLE, we could display a special message if
a player wins on the most difficult setting and their xp is
greater than 90.

The compound conditional statement starts with “if”, and
then we can add a Boolean expression followed by the
logical operator “AND” and the other Boolean expression:

xp = 150

difficulty = "Hard"

if xp > 90 and difficulty == "Hard":

print("You surpass all expectations!")

First Boolean
expression

Second Boolean
expression

You surpass all

expectations!

408

Examples of how logical operators work:

 3 < 4 and 6 == 6

True AND True evaluates to True

 4 != 4 and 6 > 2

False AND True evaluates to False

 5 == 5 or 6 < 3

True OR False evaluates to True

 4 > 12 or 7 != 7

False OR False evaluates to False

 not(6 < 13)

 True evaluates to False

409

 TRUTH TABLES list all the possible outcomes of logical
operators. Truth tables for AND, OR, and NOT:

AND TRUTH TABLE

Boolean 1 AND Boolean 2 Evaluates to

True AND True True

True AND False False

False AND True False

False AND False False

OR TRUTH TABLE

Boolean 1 OR Boolean 2 Evaluates to

True OR True True

True OR False True

False OR True True

False OR False False

410

NOT TRUTH TABLE

NOT Boolean Evaluates to

NOT True False

NOT False True

Nested Conditional
Statements
 NESTED CONDITIONAL
 STATEMENTS can be nested
within loops.

FOR EXAMPLE, you could make a game that loops until
the game is over. The game play could be controlled using
compound and nested conditionals.

Suppose you are creating a game where the user has to
enter as many three-letter words as they can. If they
repeat a word, the game is over. You can use a flowchart
to map out the order and direction of actions.

NESTED
CON DITIONALS

Loop

411

Start

Yes

End

No

No

Yes
No

Yes

Is game == “play”?

Print “Enter a 3-letter word:”.

Set input to “new” variable.

Print “That’s not a

3-letter word.”

Is new word

already in list?

Is length of new word

greater than or less

than 3 letters?

Set game = “over”.

Print “You already entered that word.”

Print “You know _ 3-letter words.”

Print “Nice one.”

Add word to words list.

412

Creates a blank lis t cal led “words”

If the word is already in the
lis t, it breaks out of the loop.

Using the flowchart as a guide, you can create the program:

words = []

game = "play"

while game == "play":

new = input("Enter a 3-letter word: ")

if len(new) > 3 or len(new) < 3:

print("That’s not a 3-letter word.")

else:

if new in words:

game = "over"

print("You already said that word. Game over.")

print("You know", len(words), "3-letter words.")

Tells how many
words in the lis t

Sets the variable “new"
to the user input

Checks if the word is
3 letters long

Prints if word is not 3 letters long

If the word is 3 letters, it moves on to the code below.

If the user enters a word they already
used, it prints the game over message.

Starts a while loop for game play

413

else:

print("Nice one.")

words.append(new)

The nested conditional is:
If the word is three letters long AND unique, the game
continues.

If the word is unique,
it prints this.

It also adds the word
to the lis t.

I KNOW SO MANY
THREE-LETTER WOR DS!

414

w

 1. Label each of the following with the type of conditional
statement it represents (if, if/else, if/elif/else):

A. if at_dance == True:
 print(“Dance the night away.”)
elif busy != True:
 print(“Go to the dance.”)
else:
 print(“Stay home.”)

B. if hands != “sweaty”:
 print(“hold”)
else:
 print(“wipe hands”)

C. if courage > 50:
 print(“Say hello to your crush.”)
elif courage < 10:
 print(“Don’t make eye contact.”)
else:
 print(“Smile at your crush.”)

More questions 415

D. if breath != “sweet” and crush_distance < 10:
 print(“Go brush your teeth, now!”)

E. if crush == “at movies” or friends == “at
movies”:
 print(“Go to the movies.”)
else:
 print(“Stay home and chill.”)

416

 2. Write the output for each of the following programs:

A.
num = 3

if num >= 3:

print("Greater than 3")

B. shape = "square"

if shape == "circle":

print("you win")

else:

print("no such luck")

C. color1 = "red"

color2 = "blue"

if color1 == "red" and

color2 == "yellow":

print("orange")

elif color1 == "red" and

color2 == "blue":

 print("purple")

else:

print("green")

D. fact = not(5 == 4)

print(fact)

More questions 417

 3. What does the AND logical operator do?

 4. Mark each compound conditional statement as True or False:
A. You live on planet Earth AND the moon:
B. You can breathe air OR breathe water:
C. Not(You are human):
D. Spider-Man is real OR Batman is real:

 5. Draw a flowchart for each of the following descriptions.

A. A program that first asks if the user wants to watch
a Harry Potter movie. If they do, suggest which
Harry Potter film they should watch based on if the
user likes young Harry (movies 1 or 2) or older Harry
(movies 3 to 7).

B. A program that first asks if the user likes hats. If they
don’t like hats, tell the user to try out visors. If they do
like hats, and if they like plain things, suggest baseball
caps; otherwise, suggest top hats.

C. A program that first asks if the user likes to be bored.
If the user likes to be bored, suggest that they do
nothing. If they don’t like being bored, ask if they like
to read. If they like to read, ask if they like to read a
lot. If they like to read a lot, suggest that they read a
novel; otherwise, tell them to read a magazine.

418

 6. Write a program for the following flowchart.

 7. What would the program in question 6 print if the
variable “color” had the value “orange” and the variable
“size” had the value “small”?

YesNo

Yes

No

Yes

No

Is size

“large”?

print: “Look out

for sharks!”

print: “Do you see

a whale?”

Is color

“gray”?

Is color

“orange”?

print: “Your fish

could be tropical.”

print: “You probably

own a goldfish.”

answers 419

 1.

A. if/elif/else
B. if/else
C. if/elif/else
D. if
E. if/else

 2.

A. Greater than 3
B. no such luck
C. purple
D. True

 3. The AND operator combines two Boolean expressions to
make a compound conditional statement. A compound
conditional statement that uses AND is True only if both
Boolean expressions within the statement are True.

420

YesNo

YesNo

Do you

like hats?

Do you like

plain things?

print: “Try a baseball cap.”print: “Try a top hat.”

print: “Try a visor.”

 4. A. False
B. True
C. False
D. False

 5. A.

B.

Yes

No Yes

Do you want to watch
a Harry Potter movie?

print: “Watch
movie 1 or 2.”

Do you prefer
young Harry?

print: “Watch movie
3, 4, 5, 6, or 7!”

More answers 421

Yes

No

Yes

Yes

No

Do you like being
bored?

Do you like
to read?

Do you like to read
a lot?

print: “Do nothing.”

print: “Read a magazine.”
print: “Read a novel.”

 6. if size == "large":
 if color == "gray":

 print("Look out for sharks!")

 else:

 print("Do you see a whale?")

else:

 if color == "orange":

 print("You probably own a goldfish.")

 else:

 print("Your fish could be tropical.")

 7. You probably own a goldfish.

C.

422

Chapter 32
FUNCTIONS

Functions are blocks of code
that you can use to build a
bigger program. You can add
more premade functions by
importing modules.

TURTLE GRAPHICS
The TURTLE MODULE is filled with
functions that allow you to treat the
screen like a drawing board and use
the turtle icon to draw on it.

The words function and
procedure mean almost the
same thing. When talking

about Python, we refer
to function (some people
might say “procedure”).

A library is a
collection of

prewritten functions
and code that can
be imported into

a project.

A kind of library

423

Importing the Module
You can import the turtle module
using the import command. Start
with the word “from,” then enter the
module name, and then enter “import,”
which means you want to import from
the named module (in this case, “turtle”).

You can name which specific functions you want to import
from a module. To import all the functions, end the import
command with “*”.

from turtle import *

This means import all the functions from the turtle module.

Moving the Turtle
After importing the turtle module, you can use its functions
to move the turtle around the screen. The turtle starts out
facing to the right. You can make the turtle move using the
forward and backward functions.

Import command key word

Module name

Means “al l”

The default “turtle” is actually just a triangle
that points in the direction it’s facing.

424

FOR EXAMPLE, you can make the turtle move forward
100 PIXELS on the screen with the command:

forward(100)

This is what the code looks like:

from turtle import *

forward(100)

The command
will open a new
window and
draw a line
from left to right
that ’s 100 pixels
long (the triangle
at the end of the
line is the turtle):

Parameter/distance

Function

425

The left() and right() functions turn the turtle left or right based
on the direction it is facing on the screen. Both of the functions
require a parameter for the number of degrees they turn.

FOR EXAMPLE, to turn 90 degrees to the left, use:

left(90)

You can use the turtle functions along with other parts
of Python.

FOR EXAMPLE, you could use loops to make some
interesting art. A for loop that repeats 6 times along with
forward and right functions from the turtle module can be
used to draw a hexagon:

from turtle import *

for j in range(6):

 forward(70)

 right(60)

Parameter/degree
Function

This directive tel ls the turtle to
repeat the fol lowing code 6 times:
move forward 70 pixels, then turn
right 60 degrees.

PIXEL
A pixel (from picture element) is a point of light on a screen.

The small points make up images on a computer display.

426

You can also nest the hexagon loop inside another loop
that rotates by 5 degrees after each hexagon is drawn.

By repeating the outer loop 72 times, you can draw
72 hexagons, each 5 degrees rotated to the right.

from turtle import *

for i in range(72)

 for j in range(6):

 forward(70)

 right(60)

 right(5)

The code
repeated
6 times wil l
draw this
hexagon.

427

Here’s what the
drawing looks like
after running the
program:

Additional Turtle Art Functions

There are many more functions in the turtle module that can be
used to create fun art.

FUNCTION DESCRIPTION

forward() Moves the turtle forward; parameter is number of
pixels to move

backward() Moves the turtle backward; parameter is number
of pixels to move

right () Turns the turtle clockwise; parameter is number of
degrees to turn

left () Turns the turtle counterclockwise; parameter is
number of degrees to turn

penup() Picks up the turtle’s pen (ends tracing the
movements of the turtle); no parameters

428

FUNCTION DESCRIPTION

pendown() Puts down the turtle’s pen (begins to trace the
movements of the turtle); no parameters

pencolor() Changes the color of the turtle’s pen; parameters
are named colors

heading() Returns the current heading-useful if you need to
know which way the turtle is facing; no parameters

posit ion() Returns the current x and y position-useful if you
need to know where on the screen the turtle is; no
parameters

goto() Moves the turtle to a specific position; parameters
are x-axis and y-axis coordinates

fillcolor() Changes the color the turtle will use to fill a
polygon; parameter types are the same as
pencolor()

begin_fill() Remembers the starting point for a filled
polygon-used before a shape you want to fill is
drawn; no parameters

end_fill() Closes the polygon and fills with the current fill
color-used after a shape you want to fill has been
drawn; no parameters

dot () Draws a dot at the current position; no parameters

stamp() Stamps the image of the turtle shape on the screen
wherever the turtle is; no parameters

shape() Changes the shape of the turtle; parameters are
“arrow,” “classic,” “turtle,” “circle,” or “square”

Even though some functions don’t use parameters, you still need to
include the parentheses ().

429

FUNCTIONS
If you’re using the same piece of code over and over in
Python, then it ’s best to make your own function. When you
make a new function, it ’s called DEFINING A FUNCTION .

To define a function, use this format:

def functionName():

print("hello")

To CALL A FUNCTION
is to use a function
that is already defined.
When you call a function,
Python finds the
function definition and
runs the code found in
the function body.

Start with “def ” for “define”

Indent and add your code

Name the function whatever
you want (using the same rules
as naming variables), add
parentheses, end with colon

I’M
GONNA

CALL HIM. YOU CAN’T. YOU
DIDN ’T GIVE HIM

A NAME!

430

You can only call a
function after it has
been defined. To call a
function, use this format:

functionName()

Whenever you call a function,
the program jumps back to where
the function was defined, runs all the
code in the body of the function, then
goes back to where the program left
off when the function was called.

FUNCTION NAME

PARENTHESE S

I AM GOING
TO CALL YOU

THOR.

COME, THOR!
COME WHEN I

CALL YOU!

def functionName():

functionName()

The body of the
function is the

indented part. The
body is the code that

will run when the
function is called.

431

Here’s an example of a function that says “Hello, World!”:

def hello():

print(“Hello, World!”)

hello()

This will print: Hello, World!

PARAMETERS AND
RETURN VALUES
Parameters and variables are similar because they are
both used to store information. However, a PARAMETER is
different because it cannot be used outside a function. A
parameter is data that
is provided as input from
a user. Functions can use
parameters only within
the body of the function.
That ’s because a
parameter in a function
is only recognized within
the function itself.

WHO ARE
YOU?

Defines function

Body of function,
code that wil l run

Calling the hel lo function

FUNCTION

PARAMETER

432

Use the parameter like a variable.

Call the function and include the
value of the parameter, in this case 1.

FOR EXAMPLE, you can create a function that converts
meters to feet. Inside the convert function, you can multiply
the meters parameter by 3.281 (the number of feet in 1 meter)
to get how many feet are in the specified number of meters.

def convert(meters):

feet = meters * 3.281

return feet

convert(1)

If you tried to use the meters parameter outside of the
function definition, you’d get an error:

def convert(meters):

feet = meters * 3.281

print(feet)

convert(3)

print(meters)

NameError: name "meters" is not defined

“Meters” used outside the function
definition results in an error.

Function definition ends here.

Parameter nameFunction definition

433

The RETURN VALUE of a function is the information that
you can pass from the function back out to the main program.
This is the function’s output. To pass information out of the
function, write “return” followed by the output data.

Return value = function output

def convert (meters):

feet = meters * 3.281

return feet

convert(5) returns 16.405 (5 * 3.281)
convert(234) returns 767.754 (234 * 3.281)
convert(5,234) returns 17,172.754 (5.234 * 3.281).

To print the return value, use the print() function with the
function call inside it:

print(convert(1))

The program will print: 3.281

Function call

With the convert function defined, you could
call the function many times and get
a different return value each time.

This wil l return the value of feet
each time the function runs.

434

HEY, I GOT A REQUEST TO RUN THE
CONVERT FUNCTION AN D THEY ’RE

GIVING ME 2 AS AN INPUT.

SURE THING. I’V E GOT THE
FUNCTION DEFINITION

RIGHT HERE.

You can also add text around the function call to give an
explanation of the code, like this:

print("3 meters = ", convert(3), "feet")

The program will print:

3 meters = 9.843 feet

435

You can repeat a small chunk of code while using a
parameter to slightly change it for each use. For example,
in a word game program, instead of typing “Please enter
a noun” or “Please enter an adjective” repeatedly, you could
make a function to do it for you:

words = []

def prompt (kind):

ask = "Please enter " + kind + ": "

word = input(ask)

words.append(word)

Creates a new variable cal led "words" and assigns it a blank lis t

Defines a new function cal led "prompt"

The kind of word
the user wil l be
asked to enter

The user is asked to
enter a type of word.

The variable "word" is
assigned the value of
what the user enters.

The value for "word"
is added to the lis t
cal led "words".

436

prompt("an adjective")

prompt("a nationality")

prompt("a person")

prompt("a plural noun")

prompt("an adjective")

prompt("a plural noun")

The word list, created by the user‘s input, is inserted into the
word game:

print("Computers were invented by a", words[0], words[1],

"engineer named", words[2], ". To make a computer, you need

to take a lot of", words[3], ", melt them down, and make",

words[4], words[5], ".")

The output for this program is a completed story that uses
the user’s words to fill in key details.

The type of word
the user wil l enter

The "prompt" function can be cal led
many times, asking the user for
different types of words by changing
the parameters for each function cal l.

437

w

 1. How do you import all the functions in the turtle module
into a Python program?

 2. Write out the two lines of code you would need to move
the turtle 45 pixels and turn right 30 degrees (assuming
you’ve already imported the turtle module).

 3. What does it mean to call a function? What code would
you write to call a function called “BopIt” with no input
information?

 4. When you create a new function, you need to it.

 5. You can pass information into a function using .

 6. You can pass information out of a function to the main
program by using .

 7. Explain what ’s wrong with the program below:

def distance (laps):
 meters = laps * 100
 return meters
print(laps)

438

 8. In order to use a function after you’ve defined it, you
need to it. This is done with .

 9. Write the return value for each of the following functions:

NAME CODE RETURNS

A.
name = "Max"

def hello_you(person):

 sentence = "Hello " + person

 return sentence

hello_you("Max")

B. def plotter(x, y):

 instructions = "Plot a course

through " + str(x) + " and " +

str(y)

 return instructions

plotter(3, 5)

More questions 439

NAME CODE RETURNS

C.
def absolute_value(num):

 if num >= 0:

 return num

 else:

 return num * -1

absolute_value(-4)

D. def favorite(category, thing):

 sentence = "My favorite " +

category + " is the " + thing

 return sentence

favorite("snake", "Python")

440

 1. From turtle import *

 2. forward(45)
right(30)

 3. When you call a function, you are using the name of
the function to tell the program to run the code that
corresponds to that function name.

The code would look like: BopIt()

 4. Define

 5. Parameters

 6. Return

 7. The “laps” parameter is used outside the function
definition.

 8. call, parentheses

441

CHOOSE
WISELY!

 9.

A. Hello Max
B. Plot a course through 3 and 5
C. 4
D. My favorite snake is the Python

442

Unit

Web
Development

8
443443

Chapter 33
WHAT IS THE
INTERNET?

COMPUTER NETWORKS
A NETWORK is a group of connected computers.
For example, the computers, phones, and other devices
that your family owns are all part
of your home computer network.
When you get a new tablet and
enter in the Wi-Fi password, you’re
joining that tablet to your home
computer network.

Devices in the same network can easily communicate and
share resources with each other. For example, computers on
a coffee shop’s wireless network all share internet access,
and a family’s phones may be able to control their TV.

NETWORK
A group of connected

computers that
share information

and resources

444

Local Area Networks
A LOCAL AREA NETWORK (LAN) is a type of network
made up of nearby computers. A LAN can have anywhere
from a few devices (like a home network) to hundreds of
devices (like a school or hospital). Large organizations like
colleges can have multiple LANs-maybe one per building.

Communicating
on a LAN
Computers in a network
communicate with ETHERNET
(with wires) or WIRELESS
(without wires).

Ethernet was developed in the
1970s. It ’s the PROTOCOL ,
or rules, for how devices
communicate using cables to
physically connect. Wireless was

A wide area network (WAN) is made
of connected LANs that are far from each other

(like in different parts of the country or world). WANs
connect thousands or even millions of devices.

PROTOCOL
A standardized set

of rules

445

developed in the late 1990s. It ’s the protocol for using radio
waves to send information through the air to connected
devices.

WIRELESS
Rules that computers

follow for communicating
on a network through

radio signals

ETHERNET

WIRELESS

ETHERNET
Rules that computers

follow for communicating
on a wired network

446

THE INTERNET
The INTERNET is a world-wide
system of connected computer
networks. It ’s a giant network of
smaller networks. At home, your
family’s phones, computers, and
other devices are all part of your
home computer network sharing
a connection to the internet.

Wi-Fi is a popular way to connect wirelessly to
a network. “Wi-Fi” is believed to be short for “wireless
fidelity,” which is taken from the term “high fidelity”—

used to describe high-quality audio.

Many places have
their own networks.

Schools, coffee
shops, even malls

almost always have
their own networks

to connect to
the internet.

HOME NETWORK THE INTERNET

HELLO

447

<HTML>
<HEAD>
</HEAD>
<BODY>

HELLO, WORLD!
</BODY>
</HTML>

YOUTUBE.COM

The Web Origin Story
The modern internet began in the early 1990s, when
TIM BERNERS-LEE created the tools and framework for
the World Wide Web. In a few months, he created:

the first web browser, called
WORLDWIDEWEB and
later renamed NEXUS.
(Now we can choose
between Chrome, Safari,
Microsoft Edge, and other
browsers.)

HYPERTEXT MARKUP LANGUAGE
(HTML), the language that is
used to create the structure of
a website.

HYPERTEXT TRANSFER PROTOCOL
(HTTP), a major way to send
information over the internet.
Web browsers use HTTP to
communicate with
the computers that
store websites.

WEB BROWSER

HTML

HTTP

448

The World Wide Web created a new era of communication.
There are now many millions of devices and applications
connected to the internet.

SENDING INFORMATION
OVER THE INTERNET
When you download an item from
the internet, such as music to your
phone, the songs are too big to
send all at once. Instead, each
song is broken up into PACKETS ,
which are sent individually and
then recombined on your phone.
Each packet has a destination address and a packet
number that tells the network where to send it and
how to reassemble all the packets when they reach
the final destination.

An IP ADDRESS is used to direct
packets to the right network. IP
addresses are unique addresses

PACKETS
Small units of

data that are sent
in binary code

through a network

Every computer has its own MAC (Media Access Control)
address made up of 16 digits and letters, which

identifies the manufacturer and the specific model.

IP (INTERNET
PROTOCOL)

Rules for transferring
information on

the internet

449

BECAUSE THAT'S HOW WE
DO IT, OK?! THAT'S JUST

THE PROTOCOL!

IF COMPUTERS EACH
HAVE THE IR OWN

MAC ADDRESS, HOW
COME THE INTERNET
DIRECTS PACKAGES

TO A NETWORK, NOT
A DEVICE?

that label devices on a
network and the internet.
Every device has its own
IP address. IP addresses
can change and are
assigned by an internet
service provider.

INTERNET
SERVICE PROVIDER

A company that provides
people access to the internet

450

USING THE INTERNET TO
SURF THE WEB

 ≠

The INTERNET is the connection
and network between devices. You
can use the internet to connect to
and surf, or explore, websites.

The WORLD WIDE WEB , or web, is a collection of websites
that are linked together through the internet. The web is the
content you can view, read, listen to, stream, and download.
Most websites have links that connect them to other
websites. If you were to draw an image of all these links,
it would look like a spiderweb made of websites around the
globe. That ’s why it ’s called the World Wide Web.

INTERNET WORLD WIDE WEB

THE WEB youtube.com

facebook.com
coolmathgames.com

internet

websites

451

When you open a website on your computer, you are opening
a temporarily downloaded copy of the HTML FILES that
make up that site.

HTML stands for “hypertext markup language” and is a
language that is used to create websites. The “hypertext”
part of the name means that the language is built for
connecting websites together through links. Because websites
are linked (by the internet), you are able to use HTML to jump
from one site to another.

Every website is stored on a
computer. When you open a web
browser and type in a website,
you are asking the computer on
which the website is stored to
send you a copy of the site. The
computer where a website is
stored is called a HOST .

A host can be an ordinary computer, but most of the time
hosts are specialized computers called SERVERS . Servers
have massive amounts of storage, have fast internet
connections, and run specific software. This makes it easier
for them to store all of a website’s information.

"May I look at
www.usa.gov?"

"Sure! Here's a copy."

user's
computer Host

452

http://www.usa.gov?

Your computer downloads the
website using a list of rules
called HYPERTEXT
 TRANSFER PROTOCOL
 (HTTP) . Website addresses
start with HTTP or HTTPS
(a more secure version of
transferring files). HTTP is a
major way in which all websites are sent over the internet.

FOR EXAMPLE, part of HTTP is a set of status codes that
are sent from the server to the browser. These codes tell the
browser what ’s going on with the server. An example of a
status code is 404 NOT FOUND.

The 404 Not Found code lets the browser know that the
server couldn’t find the website that the browser asked for.

HYPERTEXT
TRANSFER

PROTOCOL (HTTP)
The rules for sharing

web content. Web browsers
use HTTP to communicate

with servers.

HYPERTEXT TRANSFER
PROTOCOL SECURE (HTTPS)

Shares the same function as HTTP but adds a layer of
security by encrypting, or coding, all transferred data

453

USA.GOV

<HTML><HEAD><TITLE>
UNITED STATES
GOVERNMENT
</TITLE></HEAD><BODY>

Finding Where a Website Lives
Every website on the internet has a UNIFORM RESOURCE
 LOCATOR (URL) or address.

Before you can access a website, your computer needs to
find out which server stores the site you need. When you
type a web address into your web browser, your computer

3. Can I access USA.gov?

4. Sure! Here you go!

1. What's the IP address for USA.gov?

SERVER

IP ADDRESS:
54.85.132.205

COMPUTER

454

first asks a DOMAIN NAME
 SYSTEM SERVER for the
IP address of the server that is
hosting the site. Your computer
can then use that IP address
to find the correct server and
ask the server for access to the HTML files that make up a
website. All of this happens in less than a second.

The DNS server works like the contact list on your phone.
You select your friend’s name from the list, and the phone
calls the number linked to your friend. You don’t have to
memorize your friend’s phone number, just like we don’t

have to memorize a website’s IP address. But you could call
your friend by entering their phone number, just like you

could access a website by entering its IP address.

DOMAIN NAME
SYSTEM (DNS)

Databases that
translate website URLs

to IP addresses.

2. It's 54.85.132.205.

DNS SERVER

455

Popular websites are hosted
on many servers throughout
the world. This helps to keep the
site running quickly when many
requests to view the site are
made at the same time. It also
helps to prevent outages if one
server goes down. Users are probably
connected to the closest server.

The Transmission Control Protocol
Once your computer connects to
the host server, the server follows
 TRANSMISSION CONTROL
 PROTOCOL (TCP) . Devices
use TCP when all the requested
information (website, picture,
video) needs to be transferred.

FOR EXAMPLE, when you load a website, the server
sends you the site information as small packets. If a
packet gets lost along the way (usually due to a lost
or weak connection), your web browser will send a
new request for the missing packet. It will keep
sending the request until it receives the packet and
the entire site is loaded.

Every minute, millions of
people use the internet to

view a wide variety of things.
That’s why the internet
needs protocols to keep

things organized.

TCP
A set of rules computers

use when they are
transferring information

across the internet

456

43
21

YOUR
COMPUTER TCP SERVER

Breaks site
into packets

I NEED PACKET 1
I NEED PACKET 2

I NEED PACKET 3
I NEED PACKET 4

SEN
DIN

G

LO
ST!

I STILL NEED PACKET 4

Puts site
back together

2

1

3

4

43
21

2

1

3

4

4

SEN
DIN

G

SEN
DIN

G

SEN
DIN

G

SENDING

457

The User Datagram Protocol
 USER DATAGRAM PROTOCOL (UDP) is another way
to transfer information. It focuses more on speed than on
getting every single packet to the final destination. This
protocol is used when speed is more important than getting
all the requested information.

FOR EXAMPLE, video conferencing services like Google
Hangouts or Skype use UDP because users would rather keep
the video call going, even if the image gets fuzzy, than pause
the call and wait for every last pixel to load. A computer
running a video conferencing service won’t request the
server to resend a packet that it didn’t get.

WHO ARE
YOU?

458

w

 1. What ’s the difference between the internet and the
World Wide Web?

 2. What are packets?

 3. Why are protocols necessary to transfer information
and communicate on a network?

 4. What is a DNS server?

 5. How does a computer know if information sent over
a network is meant for it?

 6. Explain what a protocol is. Why is it useful to have
a protocol for network communication?

 7. What does a server do and how is it different from
a personal computer?

 8. What does “URL” stand for?

 9. Why does a video service like Skype prefer to use UDP
protocol?

More questions 459

 10. Who created the tools used to surf the World
Wide Web?

 11. What does TCP stand for, and how is it different
from UDP?

460

 1. The internet is the connection between devices,
and the web is the content (including websites,
videos, pictures, etc.).

 2. In order to transfer files over a network, they need to
be broken up into packets. Packets are small chunks of
a file.

 3. Without protocols, information would get jumbled up
and lost. Protocols help make sure that information is
delivered correctly and to the right location.

 4. A DNS server is like a contact list on a phone. It ’s a
system of databases that look up a URL and provide the
IP address for the server that stores the site.

 5. All information sent over a network has a destination
address in the header, which is used to find the right
computer.

 6. A protocol is a set of standardized rules or procedures.
Protocols make sure everyone follows the same set of
guidelines. Ethernet and wireless are run by protocols
so that information can be transferred in an organized
manner.

More answers 461

 7. Servers are computers that have a very fast internet
connection and lots of storage space. They store
websites, videos, pictures, and other information that
users can access through the internet.

 8. Uniform Resource Locator

 9. UDP is a faster way to send information because it
doesn’t require that every single piece is transferred
perfectly. People prefer a slightly spotty video call
over a dropped call.

 10. Tim Berners-Lee

 11. Transmission control protocol. TCP is different from
UDP because it checks to make sure all the requested
information is delivered, and resends it if it isn’t.

462

Chapter 34
CYBERSECURITY

WHAT IS CYBERSECURITY?
 CYBERSECURITY is needed to keep digital information
safe. Cybersecurity is a set of techniques or ways used to
keep information secret, available, and uncorrupted:

 Secret : Information that shouldn’t be
shared with others needs to be kept
private.

 Available: Authorized people should be
able to access their files and information
stored on a computer. If someone puts
a virus on your computer that prevents
you from using it, they are making your
information unavailable to you.

 Uncorrupted: Files and information
on a computer should not be

AUTHORIZED
PERSON

Someone who
has permission

463

changed by an unauthorized
person. If someone changes the
password to one of your social
media sites and logs on as you,
they have corrupted your account.

CYBERSECURITY
TECHNIQUES
Cybersecurity techniques can:

 prevent the wrong
people from gaining
access to information

 make it impossible to
use the information,
even if unauthorized
people do get their
hands on it

Usually multiple cybersecurity techniques are used to protect
information.

Authentication
 AUTHENTICATION is the process computers use to
confirm someone’s identity before giving them access

VIRUS
Software that is meant to
do harm and can spread

to other computers

464

to information. Computers can use different kinds of
authentication:

 asking for a username and password
 scanning a fingerprint
 using a camera to recognize your face

 TWO-FACTOR AUTHENTICATION combines two
different kinds of authentication.

FOR EXAMPLE, to log on to your email account with
two-factor authentication, you may need to enter
your password and scan your finger on your phone.
It ’s much harder for attackers to break through
two-factor authentication.

Access Control
 ACCESS CONTROL refers to authorized users having
access to specific files. If you have a user account through
your school, you can access your homework, grades, and
other files that you need. But you can’t access the teacher’s
account to change your grade, view another student ’s
information, or download next week’s exam. Access control
uses authentication to prevent the wrong people from
getting data they aren’t authorized to view.

465

I STOLE THE
WORLD’S GREATEST
CHIL I CHEE SE CORN

DOG RECIPE... . . . BUT I CAN’T
UNDERSTAND A
SINGLE WOR D!

Sandboxing
 SANDBOXING is putting an application in a secured
part of the system with limited access to the rest of the
computer system. This way, if an attack is made on the
application, only that application will be affected, and the
rest of the system will stay safe.

CRYPTOGRAPHY
 CRYPTOGRAPHY
is a strategy for
keeping information
secret. The goal of
cryptography is to
scramble information
and messages so well
that no one except
authorized people
can unscramble
and read them.
This adds another

466

CIPHER

SE
C

RE
T

 TERCE S

layer of security beyond access control, so that even if an
unauthorized person gets the secret files, they still won’t be
able to read them.

The process of scrambling and unscrambling information is
called encryption and decryption. ENCRYPTION is when
readable information is transformed into a secret message,
and DECRYPTION is the process of returning the secret
message to readable information.

A CIPHER is the tool used to make information unreadable
to people who don’t have the KEY . The key is used with the
cipher to decrypt an encrypted message. A cipher is also the
tool that is used to translate a secret message back into its
original, readable form. For example, a bank’s website uses
a cipher to translate customers‘ account information as it is
sent between a computer and their server.

ENCRYPTION

467

Ciphers are much older than computers. The Roman
dictator JULIUS CAESAR (100 BC-44 BC) used one of
the earliest ciphers, which was named
after him. The CAESAR CIPHER shifts
each letter forward a fixed number
of positions, for example, three spots
on the alphabet.

For example, using the Caesar cipher, “Hello, World” would
be encrypted to “Khoor Zruog.”

You could decrypt the message “Khoor Zruog” by using
the key in reverse and shifting each letter backward
three spots.

The Caesar cipher is easy
for some people to crack and
even easier for computers
to crack.

The key to the Caesar
cipher is to move each

letter forward a certain
number of spots.

CRACKING A
CODE OR CIPHER

When someone finds a way to
decrypt encrypted messages

without being told the key

468

During World War II
(1939-1945), the German
military improved the Caesar
cipher with a machine
called ENIGMA. It used a
complicated combination
of different ciphers. Every
let ter that was typed in
went through multiple layers of encryption,
and then the key shifted for the next let ter. So two
of the same let ters in the original message would be
set to different let ters in the encrypted version.

HACKERS
 HACKERS are people who
break into computers and large
computerized systems. There are
many types of hackers, and not all
of them are bad.

Alan Turing (England, 1912–1954): During World War II,
Turing worked on a team tasked with breaking the
German encryption machine, Enigma. His creation,

the BOMBE, was an early computer that succeeded in
decrypting messages coded by Enigma.

The Enigma

Companies and
governments hire white

hat hackers to help
protect systems and

information.

469

 BLACK HAT HACKERS break into a
system to steal information or do damage.

 WHITE HAT HACKERS hunt for bugs
and other faults to fix them before
black hat hackers can use those
faults to break in.

HACKTIVISTS break into systems
to accomplish social or political goals.

ATTACKS
Hackers can use different attacks to break into a system.

A BRUTE FORCE attack is when a hacker uses a computer
to guess every authentication possibility. For example, guessing
every possible password combination is a brute force attack.

The term “hacker” also means someone who uses objects
in creative new ways. For example, using your sunglasses
to prop up your phone is a hack, because sunglasses aren’t
meant to be used that way. This definition builds on the
concept of the computer
hacker, who gains access to
a system using code, bugs,
and other digital features
in creative ways.

470

If you set your password to a 4-digit number, a computer
could guess every number between 0 and 9999 to find your
password within seconds. This is why websites and apps
usually require you to use at least eight characters that
include numbers, symbols, and some capital letters. There
are over 600 trillion combinations you could use to make one
of these passwords, which is why longer, more complicated
passwords are much harder to crack with brute force attacks.

ARE YOU STILL TRYING TO FIGURE OUT
MY PASSWOR D? I TOLD YOU IT’S TOO

LONG TO CRACK.

Do the Math
Personal identification numbers (PINs) that are 4 digits

long and use 10 numbers (0–9) have 10*10*10*10 or
104 = 10,000 possible combinations. But a password

that is 8 characters long and uses 10 numbers, 26 lowercase
letters, 26 uppercase letters, and 10 characters has

728 = 722 million combinations.

471

PASSWOR DS

Another way that hackers can access systems is by
using MALWARE . Malware includes any type of harmful
software installed on a computer.

Malware includes:

 Ransomware: keeps a user
from accessing a computer
until they pay the hacker
money.

 Spyware: spies on the
user to steal information
like usernames and
passwords.

 Trojan horse (or Trojan):
Any type of harmful
software that is disguised
as a normal file.

472

! !

 Virus: software that
spreads like a disease to
other computers. Viruses
are especially dangerous
within networks since
they can spread to all
computers connected
within that network.

 Worm: harmful
software that can
make copies of itself
and spread on its own.
Worms often spread
by sending themselves
through mass emails.

473

PASSWOR D

No Coding Required
 SOCIAL ENGINEERING is the
most popular type of attack,
and it doesn’t use coding at all.
Social engineering is when a
person pretends to be someone
else to get what they want.
 PHISHING is one type of
social engineering, where an
attacker pretends to have a
legitimate email address or
website in order to get your
username and password.

FOR EXAMPLE, an attacker could send out an email that
asks you to log on to one of your social media accounts. But
instead of linking to your actual account, they send you to a
site they set up to look exactly like the real thing. When you
log on to their fake site, you are giving the attacker your
username and password, which they can then use to log on
as you on the real social media site.

474

Distributed denial-of-service (DDoS) attacks are when a
hacker uses lots of computers (probably infected by a virus)
to send so many messages to a server at the same time
that the system is overloaded and crashes. Usually, a hacker
uses a DDoS attack to collect a ransom or to accomplish
a political goal, like shutting down a website they don’t
agree with.

TIP:
Protect yourself and never give out information that

has been requested through an email. The social media
websites you use already know your password—they will

never ask for it (only social engineers will). When in doubt,
don’t click on the link in an email. Also, be sure to look

closely at URLs: www.amazon.com is a legitimate site, but
www.amaz0n.com is probably a phishing site. There is
a “0” in place of the “o” in the phishing site address.

475

http://www.amazon.com
http://www.amaz0n.com

w

 1. What is cybersecurity?

 2. Which cybersecurity technique confirms the user's identity?

 3. Which cybersecurity technique isolates an application so
that if it is attacked, other applications are not?

 4. Which type of hacker breaks into systems legally?

 5. What is a brute force attack?

 6. Match the description to the type of malware.

Ransomware can copy itself and spread on its own

Spyware is disguised as a normal file

Trojan spreads like a disease

Virus keeps users from using their computers
until they pay up

Worm spies on the user to steal information

476

 7. What is a cipher used for?

 8. This message was encrypted using the Caesar cipher
and shifting each letter forward three spots. Decrypt it:
gdb

 9. What is encryption?

 10. What is phishing?

 11. What is the name of the German machine used to
encrypt the messages of German soldiers during
World War II?

answers 477

 1. The set of techniques used to keep information safe

 2. Authentication

 3. Sandboxing

 4. White hat (Although hacktivists’ intentions may be good,
what they do is still illegal.)

 5. Using a computer to guess every authentication
possibility

 6. Match the description to the type of malware.

Ransomware can copy itself and spread on its own

Spyware is disguised as a normal file

Trojan spreads like a disease

Virus keeps users from using your computer
until they pay up

Worm spies on the user to steal information

478

 7. To encrypt and decrypt messages, making information
unreadable to people who don’t have the key

 8. day

 9. Encryption is the process of scrambling information
so that only someone with the key can decrypt and
understand it.

 10. Phishing is a type of social engineering where
someone pretends to be an authoritative figure to
get you to share personal information like your
username and password.

 11. Enigma

479

THEY
CALL ME

CYBER SAFE
CIN DY!

480

BUILDING BLOCKS OF WEBSITES
All websites are created using HTML CODE . HTML is what
professional web developers (people who make websites for
their job) use to organize and display text, images, videos, etc.
in a web browser. HTML is used to
tell a web browser what to display.

 CASCADING STYLE SHEETS
 (CSS) is used by websites to tell
the browser how the site should
be displayed. You can use CSS to
change the color of text, insert
a background image, and more.

Chapter 35
CREATING
A BASIC

WEB PAGE

HTML
Stands for Hypertext
Markup Language.

The “hypertext” part
means that it connects
websites together, so
you’re able to go from
one site to the next.

481

OH, YOU’RE LEARNING SPANISH?
THAT’S NICE. I’M LEARNING FOUR
LANGUAGES: SCRATCH, PYTHON,

HTML, AN D CSS.

¿QUÉ?

FOREVER
BEST FRIEN DS

HTML

CSS

Early websites were made using
only the language HTML and early
versions of CSS, which means
they didn’t have much styling,
interactivity, or animation. Now
there are many languages used
in addition to HTML and CSS
to create lively and interactive
websites. HTML and CSS are used
to create the layout and look of
a website, while other languages
like JavaScript and PHP are used
to run programs that make sites
more interactive.

TOOLS FOR WRITING A WEBSITE
Professional web developers sometimes pay to use special
code editor programs where they write the code that makes up
websites. However, the TEXT EDITOR that comes preinstalled
on computers (Notepad or TextEdit) can be used as well.

HTML website files are saved as an “.html” file type. For
example, a website called “index” should be saved as
“index.html.”

Tells the browser this is an HTML file
File name

482

VIEWING A WEBSITE
To view a website, you need a WEB BROWSER . Web
browsers are programs that can read HTML files and
display them as websites on your computer. Examples of
web browsers are Chrome, Safari, Microsoft Edge, and
Firefox.

Go to the folder where your .html file is saved, right-click
(or command click on a Mac), and under the “Open with”
menu, select a browser. When you open your file, the browser
displays the website.

You can name your HTML files whatever you want. “Index”
is usually what the main page of a website is named.
Be sure to include “.html” after the name of your file;

otherwise web browsers won’t read it correctly.

483

WEB PAGE BASICS
All websites contain CONTENT . Content is the text, images,
or other parts of a website that the viewer sees when they
look at the site in their web browser. WEB BROWSERS are
programs that can read HTML files and display them as
websites on a computer.

Tags and Elements
 ELEMENTS are the parts of the webpage; they are like
building blocks. Each type adds a different detail, or layer,
to what you want to build.

 TAGS are like quotation marks. The opening quotation
mark tells you when a quote begins, and the closing quotation
mark tells you when the quote ends. Start and end tags work
in the same way. They surround each piece of content in the
code for a website.

You can read the HTML
code from any site by
right-clicking on the
page in a web browser
and selecting “view page
source.” A new window
will open, revealing all
the code for that page.

WOW.
CHECK OUT ALL

THAT CODE!

484

START TAG /END TAGCONTENT

TAG!

YOU'RE
AN ELEMENT

NOW!

Tags are important because they tell the computer when an
element begins and when it ends.

Elements are the tags plus the content inside them.

 Element = Tags + Content

There are many types of elements, but they all start with
a tag, followed by content, then end with a tag:

<elementName>Content goes here . . . </elementName >

content

Start tag: You place angle brackets
around the name of an element.

End tag: like the start tag
but with a forward s lash

This whole line makes
up an element.

485

Elements are used to format text and divide the website
into sections. For example:

ELEMENT DISPLAYS AS

This text is bold This text is bold

<h1>This is a heading</h1> This is a heading

This text is emphasized This text is emphasized

<button>This is a Button</button>

WEBSITE ELEMENTS
Every website should include the <html>, <head>, and
<body> elements.

The <HTML> ELEMENT holds all other elements between
its opening and closing tags. This element marks where the
HTML document starts and ends.

The <HEAD> ELEMENT holds elements that give additional
information about the website. Most of the elements in the
<head> element do not display content on the website for
the viewer to see. These elements give information to the

486

web browser, including additional CSS code, the site’s title, or
key words for search engines to look for.

The <BODY> ELEMENT is where all the website content
that you see goes. The text, images, videos, animations, and
anything else you want displayed on your site go here.

The head and body of a website can look like this:

A heading

A paragraph

The title text is
displayed on the
browser tab.

A paragraph
with bold
text in it

<!DOCTY PE HTML>

<HEAD>

<HTML>

</HEAD>

<TITLE>VOLCANO REPORT</TITLE>

<BODY>

</BODY>

</HTML>

<H1>SHIELD VOLCANOES</H1>

<P>SHIELD VOLCANOES SLOWLY OOZE
LAVA, CREATING A BROAD SHAPE WITH
GENTLE SLOPES.</P>

<P>A FAMOUS EXAMPLE OF A SHIELD
VOLCANO IS K ILAUEA IN
HAWAII. K ILAUEA IS STILL ACTIV E
AN D ADDS TO THE LAN D MASS OF THE
ISLAN D.</P>

487

FORMATTING HTML
Indentation and white space don’t matter in HTML. Indenting
nested elements makes it easier to keep everything organized.
Indenting the <h1> element in the text below shows that it ’s
nested inside the <body> element.

<body>

<h1> Shield Volcanoes</h1>

</body>

It’s important to put the close tags in the right place. This
code has a bold element nested inside a paragraph element:

<p>A famous example of a shield volcano is Kīlauea

in Hawaii. Kīlauea is still active and adds to the land mass

of the island.</p>

This displays:

A famous example of a shield volcano is Kī lauea in Hawaii.
Kīlauea is still active and adds to the land mass of the
island.

The tag is used to make “Kī lauea” bold. The elements are
properly nested because the start and end tags
are inside the <p> start and </p> end tags.

488

If your tags are nested incorrectly, content may show up
wrong, it would be harder to keep code organized, and it
would make finding errors more difficult.

Incorrect nesting:

<p>A famous example of a shield volcano is Kīlauea in

Hawaii. Kīlauea is still active and adds to the land mass of

the island.</p>

The end tag comes after the </p> end tag, which confuses
the nesting order and will not show the text correctly.

HTML is not case sensitive. This means that all these
examples work the same:

<BODY> All uppercase
<body> All lowercase
<Body> Mixed capitalization

But most web developers type their tags in lowercase, mostly
because it used to be required and has become a habit.

489

Exclamation point at the beginning but not at the end

Comments
You can add comments to your HTML code that won’t be
read by the browser. Comments are notes to yourself about
the program. They look like this:

<!-- Write your comments here -->

Opening and closing tags need to be different so that the
programmer and the computer don’t get confused about
where tagged content starts and stops.

FOR EXAMPLE, the opening <!-- tag looks different from
the closing --> tag, and the opening tag has an exclamation
point while the closing tag does not.

490

NO COMMENTS,
PLEASE.

IT WAS A GIFT.

491

w

 1. What are the two most commonly used website
languages? What part of the website does each
language control?

 2. What does HTML stand for?

 3. Fill in the blanks below to label each part

<elementName> </elementName>

 4. To code an HTML file, you can buy a professional
program, or you can use one of these built-in programs:

 or .

 5. When you’re saving an HTML file, what should be at the
end of your file name?

 6. What program do you need to use to view a website?

492

 7. What is the common file name used for the main page
of a website?

 8. What is the name of the text, images, or other parts of
a website that the viewer sees?

 9. The beginning and end of an element are marked with
 .

 10. Write out a comment in HTML.

 11. Which three HTML elements should you use in every
website you make?

 12. Explain what it means that HTML tags are not case
sensitive.

 13. In which element do you place the most visible content
you want viewers to see?

More questions 493

 14. Which statement is true about spacing?
A. Spacing in HTML is required as part of how the

code runs.
B. Spacing in HTML, like indenting elements, helps the

programmer read their code, but doesn’t impact how
the code is run.

 15. What kind of elements go inside the <head> element?

 16. All website content code should be added between the
 start and end tags.

 17. The structure of a website is made up of .

494

 1. HTML-controls layout
CSS-controls design

 2. Hypertext markup language

 3.

<elementName> </elementName>

 4. TextEdit for Mac, or Notepad for PC

 5. .html

 6. A web browser like Chrome, Microsoft Edge, Firefox,
or Safari

 7. index.html

 8. Content

 9. Tags

start tag end tag

content

element

More answers 495

 10. <!-- This is a comment -->

 11. <html>, <head>, and <body>

 12. You can capitalize tags however you want, and it won’t
affect the code.

 13. The <body> element

 14. B

 15. Elements that give extra information about the website
to the browser. For example, the site title or key words
are stored in the <head> element.

 16. <body>

 17. HTML elements

496

Chapter 36
HTML TEXT
ELEMENTS

HEADING ELEMENTS
Websites use headings to divide the text and act as titles
for each section. HEADING ELEMENTS make text bigger
and bolder.

There are 6 heading tags: <h1>, <h2>, <h3>, <h4>, <h5>,
and <h6>. The <h1> tag is the highest level-that means
it ’s the biggest and boldest.

darker

497

FOR EXAMPLE, an <h1> heading can be used for a
top-level heading like “Types of Volcanoes”, and an <h2>
subheading can be used for the types of volcanoes like
“Shield,” “Cinder Cone,” and “Composite.”

<h1>Types of Volcanoes</h1>

<h2>Shield</h2>

<h2>Cinder Cone</h2>

<h2>Composite</h2>

That code would look like this in a browser:

Types of Volcanoes
Shield
Cinder Cone
Composite

PARAGRAPH AND FORMATTING
ELEMENTS
The PARAGRAPH ELEMENT , <p>, is used to make
paragraphs. HTML ignores all spaces and new lines in code,
so if you want text to appear as its own paragraph, use the
<p> element.

You can also use the element to make text bold
or the <i> element to make text italic.
498

FOR EXAMPLE, you can surround some content with
<p> tags, specific text with tags to make it bold, and
<i> tags to make it italic:

<p>A famous example of a shield volcano is Kīlauea

in Hawaii. <i>Kīlauea is still active</i> and adds to the

land mass of the island.</p>

The paragraph would look like this:

A famous example of a shield volcano is Kīlauea in
Hawaii. Kīlauea is still active and adds to the land mass
of the island.

HORIZONTAL RULES
AND LINE BREAKS
The HORIZONTAL RULE (or horizontal line) <hr> element
breaks up content by displaying a thin line across the
web page. It ‘s like drawing a line across the page for
a new topic.

PARAGRAPH

ITAL IC

BOLD

499

BREAK
IT UP!

You can add an <hr> element right after an <h1> heading to
show a separation between the sections:

<h1>Types of Volcanoes</h1>

<hr>

<h2>Shield</h2>

<p>A famous example of a shield volcano is Kīlauea

in Hawaii. <i>Kīlauea is still active</i> and adds to the

land mass of the island.</p>

<h2>Cinder Cone</h2>

<h2>Composite</h2>

The LINE BREAK ELEMENT ,
, displays a blank line
between elements. It can be used to separate sections or
provide blanks spaces on a website.

Horizontal line between the
<h1> and <h2> headings

500

<h1>Types of Volcanoes</h1>

<hr>

<h2>Shield</h2>

<p>A famous example of a shield volcano is Kīlauea

in Hawaii. <i>Kīlauea is still active</i> and adds to the

land mass of the island.</p>

<h2>Cinder Cone</h2>

<h2>Composite</h2>

With the horizontal rule and line break elements, the web
page would look like this:

Line break element between
<p> and <h2> elements

501

DO YOU EV ER
FEEL EMPTY

INSIDE?
ALL THE

TIME.

EMPTY ELEMENTS
Most HTML elements have a start and end tag with content
between them. Some elements have no content and no end
tag. These are called EMPTY ELEMENTS .

The <hr> and
 elements are called empty elements
because they have no end tags.

502

MY FAVORITE FOODS

• AVOCADO

• PIZZA

• BANANA

• RICE

• BBQ CHICKEN

I LOVE
BE ING ALL
TOGETHER!

LIST ELEMENTS
 LIST ELEMENTS format text as a bulleted or numbered
list. Lists use a combination of elements.

The UNORDERED LIST
 ELEMENT is used to
display a bullet list of items.
For example, you can use an
unordered list to make a list
of your friends or foods you
like to eat.

To make each item separate
(on a separate line), you also
need to use the LIST ITEM
 ELEMENT for each
bullet point item in your list. Always use list item
elements inside a unordered list element.

503

FOR EXAMPLE, to create an unordered list of famous
volcanoes using the and elements:

<h1>Volcanoes</h1>

<hr>

<h2>Famous Volcanoes:</h2>

Mount Vesuvius

Mount St. Helens

Kīlauea

The web page will
look like this:

List items each get
their own

The entire lis t is wrapped in tags

504

An ORDERED LIST uses the tag and displays a
numbered list of items. Ordered lists can be used to show
top-ten favorite dance moves or for giving a list of
sequential steps. Each item also needs the list item
 element.

FOR EXAMPLE, you can create a list of the largest
volcanoes on Earth:

<h2>Largest Volcanoes on Earth:</h2>

Tamu Massif

Kilimanjaro

Mauna Loa

Here’s what the web
page would look like:

List items each get their
own and tags

Entire lis t wrapped in tags

505

w

 1. What is wrong with the code below?
<p>This is a paragraph

 2. What is wrong with the code below?
<p>I like to Move it, Move it</p>

 3. Rank the website heading elements from biggest
to smallest.

 4. What tag should you use to make text bold?

 5. What tag should you use to make text italic?

 6. What ’s the difference between these two list elements:
 and ?

 7. Individual items on a list are identified using which tag?

 8. How is the <p> element used?

 9. If an element doesn’t have any content or an end tag,
it ’s called an .

506

 10. What does the
 element do?

 11. Which of the following is an empty element?
A.

B.
C. <p>
D. <h3>

 12. What does the <hr> element do?

answers 507

 1. The start tag and end tag must have the
same name.

 2. This code isn’t nested properly. The </p> and
end tags should be switched.

 3. <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

 4.

 5. <i>

 6. is used for unordered lists (bullets), while is used
for ordered lists (numbered)

 7. or list item

 8. The <p> element is used to set off a chunk of text as its
own paragraph.

 9. Empty element

508

 10. The
 element creates a line break or a blank line
between elements.

 11. A

 12. The <hr> element draws a horizontal line between
elements on a web page.

509

ONCE AGAIN,
I'M ALL
ALONE.

510

ENGAGING
HY PERL INK

MAKE
IT SO

Chapter 37
LINK

ELEMENTS

In HTML, the “hypertext” part of the name means that links
can be used to connect to other pages, websites, or files.

A HYPERLINK is a connection between websites. A link
turns an HTML element into a button that takes users to
a new website.

511

SEARCH ENGINE

VOLCANOES

• VOLCANOES OF THE WORLD
• FACTS AN D TY PE S OF VOLCANOES
• FAMOUS VOLCANOES
• ACTIV E VOLCANOES

ACTIV E VOLCANOES
FAMOUS

VOLCANOES

FACTS AN D
TY PE S OF
VOLCANOESVOLCANOES

OF THE WORLD

Links are what make websites useful. Users are able to
instantly jump to related information on other web pages.
For example, when you search for “volcanoes” on a search
engine, you will be given a list of websites that mention
volcanoes. You can click on any of the search results and
jump to the website, because the search engine has added
the links for each site listed.

512

POTATO.COM HOME RECIPES ABOUT

"Spuds are buds!"

ANCHORS
AWEIGH!

Links also power the NAVIGATION MENU on a website. A
navigation menu is a collection of links, each of which leads to
a specific location on a website. Links are what make it possible
to visit each page within the site with a click of a button.

The ANCHOR ELEMENT , <a>, is used to add links to websites.

In addition to
putting <a> and
around the name of
each link, you need to
add the web address
for the website
where the users
will be sent.

513

 ATTRIBUTES add
additional information about
elements. For example, you
can use an attribute to add
the website address to a link,
the width and height you want
an image to be, or other
style information.

Attributes are included
inside the start tag and
follow this pattern:

 attribute name=“information”

To create a link to another website,
use the href attribute.

Use an anchor element <a> with an href attribute to add a link
to the volcano-related website “www.EruptingVolcanoes.com”:

1. Name the website you want to visit using .

2. Add the web address that will act as the link.

3. Add the tag to show where the link ends.

the website you
want to go to

ATTRIBUTE
Extra information
within an element

 ATTRIBUTES

HE IGHT

WIDTH

514

http://www.EruptingVolcanoes.com%E2%80%9D:

Visit Erupting

Volcanoes Site

IMAGE ELEMENTS
Images make websites more interesting and engaging.

The IMAGE ELEMENT is used to add images to
websites. The element is an empty element, so there
is no end tag.

The SRC (source) attribute is used to specify the file name
and where an image file is located so that the browser
can find the file and display it on the website. Image files
need to be stored with your website file or referenced from
another website.

ATTRIBUTE NAME

Anchor tags wil l turn “Visit Erupting
Volcanoes Site” into a clickable link.

Additional information
(the website we are
linking to)

515

http://www.EruptingVolcanoes.com

For example, you can use the web
address of a volcano picture from
another website to add it to the
volcano web page. When viewing a
website, right-click on the image in
Windows (command click on a Mac)
and select “copy image address” from the menu. This copies
the address where the image is stored. You can use this
address as the value for your src attribute.

The copied image address from another website would be
formatted like this:

“www.eruptingvolcanoes.com/images/volcano1.jpg”

Images stored with a website are usually kept in files.
Their location is specified in the web address, where the
first part is the website (A). Then a
forward slash and the name of the
folder the image is kept in (B). Then
another slash and the name of the
image with the file extension (C).

A B C

Don’t worry if the
picture looks too big
or too small—it can

always be resized
using CSS later.

516

http://www.eruptingvolcanoes.com/images/volcano1.jpg%E2%80%9D

IT'S ALWAYS A
GOOD IDEA TO GET
PERMISSION FIRST

BEFORE USING
AN IMAGE.

To link to an image, you’ll first add an element and then
paste the image’s web address into the src attribute value like this:

Type this in.
Paste the image address
you copied here.

Link only to pictures you own or that you have been
given permission to use with proper attribution.

517

http://www.eruptingvolcanoes.com/images/volcano1.jpg

w

 1. What do the elements <hr> and have in common?

 2. What is a link?

 3. Why are links useful for websites?

 4. Which part of the element below is the attribute?
Click Here

 5. Look at the lines of code below. Which element would
you use to add a link to your website?
A. <link src=”www.website.com”>click here</link>
B. <link href=”www.website.com”>click here</link>
C. click here
D. click here

 6. What type of attribute is shown in the element below?
All The Links

 7. What element should you use to add a picture to
your site?

518

http://www.myfavoritewebsite.com%E2%80%9D
http://www.website.com%E2%80%9D
http://www.website.com%E2%80%9D
http://www.website.com%E2%80%9D
http://www.website.com%E2%80%9D
http://www.allthelinks.com%E2%80%9D

 8. What type of attribute do you need to add the image
file name to your image elements?

 9. What is wrong with the following code?
click here

 10. Circle the unnecessary code in the following line:

answers 519

 1. <hr> and are both empty elements.

 2. A link is a connection to another website or other
content on the internet.

 3. Links allow you to easily and instantly jump to
other sites, information, videos, pictures, or pages.

 4. Click Here

 5. D

 6. href

 7.

520

http://www.myfavoritewebsite.com%E2%80%9D

/END

SORRY, WE'RE

CLOSED

 8. src

 9. It ’s missing the web address between the quotation
marks for the href attribute.

 10.
Because the element is an empty element, a closing
tag is unnecessary.

521

I JUST FEEL
SO CONNECTED TO YOU.

CL ICK HERE
BABYSLOTH.COM

522

YOU’RE
SO

 STYL ISH.

Chapter 38
STYLING
WITH CSS

CASCADING STYLE SHEETS (CSS)
By itself, HTML makes useful websites, but it isn’t great
for making good-looking websites. CASCADING STYLE
 SHEETS (CSS) is the language used to add style to HTML
files. CSS describes the color, size, layout, backgrounds, fonts,
and other design features for websites. It also allows you
to style your web page differently
for different environments (like
handheld devices, laptops, and
desktops) while keeping the HTML
content the same.

523

There are different ways to add CSS to a website:

You can add CSS directly to an HTML file in the head
or as an attribute within each HTML element.

You can make a separate CSS file to store the
information. This makes your code easier to read
and to organize.

MAKING A CSS FILE
To make a new CSS file, use the same editor that you used
to make an HTML file (TextEdit or Notepad). You can name a
CSS file anything, but many programmers save a website’s
CSS file as style.css. For simplicity, save your CSS file in the
same folder as your HTML file.

Creating a CSS Style
 STYLES are made by pairing a
 SELECTOR with DECLARATIONS .

A selector assigns the style to a
particular element in the HTML file.
The selector is the name of the element
without the <> brackets.

STYLE
A specific change

to how HTML
content looks

This is the better way!

524

A declaration is the change in appearance. For example, you
can make text purple or put borders around images.

Selector = elements to be styled
Declaration = what the new style should look like

Add curly brackets around the declaration(s). Add an indent
for each declaration to keep the code clean. Like HTML, CSS
doesn’t pay attention to white space. If you deleted all the
spaces and indents, the code would run the same.

FOR EXAMPLE, you could type this code into a .css file
to change all the <h1> heading elements in a website to
appear blue:

h1 {

color: blue;

}

SELECTOR

DECLARATION

Semicolon after the declaration

Indent to help the programmer keep the code organized

Curly brackets surround the declaration.

525

HI! HI!

HTML CSS

Linking Your CSS and HTML Files
Before the new styles from a CSS file can be applied to a
website, the files need to be linked. You can apply the styles
in a CSS file to an
HTML website by
adding an element to
the head of the HTML.
The link element needs
three attributes:

1. The REL ATTRIBUTE stands for “relationship” and
tells what the relationship is to the file you are linking in
the <link> element. When the value is “stylesheet,” you’re
telling the browser that you want the referenced file to
be used as the CSS style sheet for the website.

a template that shows
style and layout settings

Formatting the style with the declaration indented
on a separate line and with the closing curly bracket

on the bottom line is only a suggestion to help the
programmer read the text more easily. The programmer

could write all the code on a single line like this
h1{color:blue;} and the computer would read it the same.

526

2. The TYPE ATTRIBUTE says what type of file it is-
for example a text/CSS file.

3. The HREF ATTRIBUTE identifies the name and
location of the CSS file. If the CSS file is in the same
location as the HTML file, then you just need to add the
file name.

This is the format to link “style.css” to an HTML file using the
link element:

<head>

<link rel="stylesheet" type="text/css" href="style.css">

</head>

Sometimes programmers store their CSS files in a separate
folder (usually called “css”) on their website’s server. If you
do this, add the folder name and a forward slash to the
href value like this:

<head>

<link rel="stylesheet" type="text/css" href=" css /style

.css">

</head>

type attribute: Specifies this as a CSS file

href attribute: Name
of the CSS file

rel attribute

folder name

527

This <link> element, with all its attributes, tells the web
browser to find the file “style.css” and apply the styles
from that file to this HTML document.

After linking a CSS file to an HTML file, any changes made
to the CSS will change how the website is displayed when
the browser is refreshed.

CSS COLOR ATTRIBUTES
There are three properties that you can use in a style to
change the color of a web page.

 Color changes the color of
the text within an element.

 Background changes the
background color of the
space that the element takes
up. For example, setting the
background color of the
<body> element to gray will
turn the entire page gray,
but turning the background
of a <p> element pink will
only turn the background of
the paragraph pink.
528

 Border color changes the color
of the border if an element has
a border. If there is no border,
this style will do nothing.

There are a few different ways
to specify a color using CSS:
color names
HEX
RGB

Color Names
 COLOR NAMES is a set of 147 colors that have been given
specific names and can be used in CSS.

Using named colors is convenient because you don’t have
to memorize or look up color codes. But it can be limiting
because there are only 147 colors.

FOR EXAMPLE, you can use the named color “red” as a
value for a color property to represent pure red.

Format color references like this: property: value;

color: red;
PROPERTY

VALUE (THE NAMED COLOR: RED)

529

Examples of color names:

FOR EXAMPLE, you can make an <h1> header element text
tomato red using the value “tomato” with the color property:

h1 {

color: tomato;

}

Hexadecimal (HEX)
 HEXADECIMAL , or HEX, is a type of code used to represent
over 16 million colors. The code uses 6 characters and
combines the numbers 0-9 and letters A-F.

In CSS, every HEX color code begins with “#”. For example,
the HEX value for the color pure red is: #FF0000. There are
many shades of red, each with a different value. For example,
#700000 is a much darker shade of red than pure red.

Tomato Orange DodgerBlue Medium SeaGreen

Gray SlateBlue Violet LightGray

530

RGB
 RGB stands for “red, green, blue” and is another type of
code for representing the same colors that HEX does. RGB
code uses three values (numbers 0-255) to say how much red,
green, or blue is in the color. The number 0 means there is no
color, and the number 255 means there is the highest amount
of that color.

The first value in the code represents the amount of red,
the second value is for green, and the third value represents
blue: (red, green, blue).

FOR EXAMPLE, the code below represents pure red:

rgb(255,0,0)

The value shows that the highest amount of red is present
in the color, with zero amounts of green or blue.

Start with “rgb” and surround code with parentheses.

Amount of
red: 255

Amount of
blue: 0

Amount of
green: 0

531

Here’s what it would look like to set the background color to
the same shade of light gray using the color name, HEX, and
RGB values (all these styles would produce the same results):

body {

background:

lightgray;

}

body {

background:

#D3D3D3;

}

body {

background:

rgb(211, 211, 211);

}

You don’t need to stick with one way of representing colors
in your website. You can switch between color names,
HEX colors, and RGB colors all within the same file.

RGBHEX colorsColor name

HEX

RGB

RGB

RGB

Color name

Color name

532

ELEMENT-SPECIFIC
PROPERTIES
Some elements, like tables and lists, have properties that are
used only for their element (unlike general color properties).

FOR EXAMPLE, you can change the bullet style of an
unordered list using the list-style-type property along
with one of the specified values shown below:

disc square

circle none (no bullet point is
displayed, just the text)

If you wanted to display an unordered list using squares
instead of the discs, you could insert the CSS code into
your style sheet that selects the element and use the
description shown below:

ul {

list-style-type: square;

}

This is the default

533

Most programmers don’t memorize all the properties and
values associated with every element available in HTML.
You can look up CSS properties and values on the internet.

COMMENTS
Comments keep your styles
organized so that when the CSS
document becomes longer, it ’s easy
to locate different pieces of code.

In CSS, comments start with /* and end with */ .

FOR EXAMPLE, you can add a comment in a CSS file
labeling “Heading styles” like this:

/* Heading styles */

h1 {

color: tomato;

}

h2 {

color: #D3D3D3;

}

Comments in CSS
are ignored by

computers.

comment

534

w
 1. What does CSS stand for?

 2. What are two ways that you can use CSS with your
HTML code?

 3. What is CSS used for?

 4. Comments in CSS start and end with .

 5. What CSS code would you write to make an entire
website’s background violet?

 6. The code below has a bug in it. What needs to be added
to fix it?

h1
 color: gray;
}

More questions 535

 7. Label the property and value in the declaration shown
below.

color: orange;

 8. What does the selector do in a CSS style?

 9. Which property do you need to use to change the color
of the line in an <hr> element?

 10. Which property do you need to use to change the color
of the text in an <h1> heading element?

536

 1. Cascading style sheets

 2. CSS can be placed directly into an HTML file, or you can
create a separate CSS file and link it to the HTML file.

 3. Styles like colors, sizes, fonts, and other designs for
websites

 4. /* and */

 5. body {
 background: violet;
}

 6. The opening curly bracket needs to be added.
h1 {
 color: gray;
}

 7. color: orange;

 property value

More answers 537

 8. The selector is used to specify which elements the style
should apply to. For example, a style with the “p” selector
will apply to all <p> elements.

 9. border-color

 10. color

538

Chapter 39
STYLING

INDIVIDUAL
ELEMENTS
WITH CSS

IDENTIFYING AN ELEMENT
 ID (IDENTIFIER) SELECTORS are like name tags-they
identify a specific element and apply CSS styling to it. An id
name within a CSS document says, “This style applies only to
the element with this id.”

539

STELLA, THIS CSS STYLE
SAYS ONLY YOU GET TO

BE PAINTED PINK.

STELLAC
SS

When using id attributes, you must work in both the CSS
and the HTML documents.

CSS Id Selector
You can create an id selector for a CSS style that will be
applied to a specific element in an HTML file. Instead of
using the element name, like “p,” as the selector for the
new style, type “#” and an id name. The id name can be
anything you want, but no
spaces are allowed. You can
make an id selector called
“introduction” and assign it
a style that has a font size of
18 PIXELS like this:

#introduction {

font-size: 18px;

}

px stands for pixel and is one
of the ways of measuring font

(type) size. The standard
font size on websites is

16 px, which is the same size
as the 12-point font
in Microsoft Word.

540

A pixel (px) is also the smallest point of light on a screen.
If you look very closely at
a screen, you can see tiny
dots. Each one of those dots
is a pixel. Step back from
the screen and all the dots
blend together to make a
clear image.

HTML Id Attribute
Attributes are added to tags to give the computer more
information about the element. Use the id attribute to
identify the element you want to style with the CSS code
you added to the CSS file. For example, you can insert an
id attribute called “introduction” to identify a <p> element
within the web page:

<p id="introduction">Oh, hello there! . . .</p>

With the addition of the id attribute, this <p> element will
now be styled according to the #introduction style created
in CSS, and the font size for “Oh, hello there! . . .” will be set
to 18 px when displayed on the website.

Add this code here to the opening <p> tag.

541

SHE’S NOT
IN OUR
CLASS.

LABART

THE CLASS SELECTOR
The CLASS SELECTOR is used to style a group of
elements. The class selector identifies multiple elements
and applies the same style to all of them.

When using the class selector, you must work in both the
CSS and the HTML documents. For example, you can use
the class selector to make the text blue in two of the three
paragraphs in a website.

542

CSS Class Selector
To create a class selector for a CSS style, type a period (.)
and a class name. The class name can be anything you
want, but no spaces are allowed. You can make a class
selector called “overview” and assign it a style where the
text color is blue:

.overview {

color: blue;

}

HTML Class Attribute
You can add a class attribute to specific <p> elements by
typing class= and the class name.

FOR EXAMPLE, you can insert a class called “overview” to
identify two <p> elements within the page:

<p class="overview">Oh, hello there! . . .</p>

<p class="overview">On this site we . . .</p>

<p>To learn more about . . .</p>

Add this code to the opening <p> tag. These two
paragraphs
wil l display
in blue
text on the
website.

543

Classes can be added to multiple elements, even if the
elements are not the same type. You could also add the class
to headings and it would turn the heading blue:

<h1 class="overview" >Introducing . . .</h1>

WIDTH AND HEIGHT
The CSS properties width and
height allow you to resize elements
like images, lists, and paragraphs.

When resizing images, if you
resize just the width, the height will
automatically scale to match the
width.

When it’s describing
the width or height

of an image, px
represents how

many pixels wide
or tall the object

should be.

IMPORTANT: Be very careful with spelling and
capitalization. If you spell or capitalize the id or class in the
HTML file differently than the way you spell and capitalize it
in the CSS file, the style won’t be applied correctly. If the text

isn’t showing up the way you intended, the first thing you
should check is spelling and capitalization.

Add the class attribute
and “overview” value.

544

LOOKS L IKE
WHAT I LEARNED IN
MATH CLASS ABOUT
RATIOS MAY COME

IN HAN DY .

FOR EXAMPLE, if you have an image that is 100 px wide
and 200 px tall,
and you set the
width to 200 px
wide, the height
will automatically
scale to 400 px
tall because the
width of this
image is half
of its height.

To set an image on a website to 175 px wide, add this code
to the CSS file:

img {

width: 175px;

}

You can also size an image by percentage in relation to the
size of the element block it is displayed in.

545

MARGIN
BOR DER

PADDING

CONTENT

FOR EXAMPLE, you can set an image on a website to
50 percent (or half) the size of the element block using this code:

img {

width: 50%;

}

BORDERS, MARGINS, AND
PADDING
You can use CSS to add space around images.

 Borders add a colored frame around all elements including
images, paragraphs, headings, and lists.

 Margins and padding add blank space around an
element. Padding is the space between the element ’s content
and its border. The margin is the space between the border
and the rest of the website.

546

Selects al l images in the HTML document

Adds the margin

You can add a margin to an element using the margin
property in CSS.

FOR EXAMPLE, you can give an image a 10-pixel margin
by adding the “margin” property value and “10px” as its
value:

img {

margin: 10px;

}

Some properties, like the border property, are special
because you can add more than one value in the same
declaration.

For example, add “6px solid orange” as the values to make
the borders 6 px thick, solid lines, and orange:

img {

border: 6px solid orange;

}

Insert a semicolon
at the end of each
declaration.

547

To create a style that includes the margin, border, padding,
and width of an image, you can combine all the declarations
using a single img selector, with each new declaration on a
new line:

img {

margin: 10px;

border: 6px solid orange;

padding: 20px;

width: 50%;

}

The style will set all elements to have a margin of
10 px, a solid border that ’s 6 px wide and orange, a padding
of 20 px, and a width of 50 percent of the width of the
browser window.

The declaration could also be written as img {margin: 10px;
border: 6px solid orange; padding: 20px; width: 50%;}. The indents

and separate lines make it easier for the programmer to read.

548

w

 1. What ’s the difference between the id selector and the
class selector in CSS?

 2. Px stands for .

 3. Id selectors in CSS always begin with what symbol?

 4. In CSS, class selectors have a before the
class name.

 5. If you want to change the size of a picture, which
CSS properties should you use?

 6. Which provides space between the element content and
the border: margin or padding?

 7. Refer to the table on the next page to answer questions
7A-D.

A. What code should you add to make the <p> element
with the content “Good Luck!” display in tomato red
text? Where should you add it and in which file?

More questions 549

HTML FILE:
“INDEX.HTML”

CSS FILE:
“STYLE.CSS”

<!DOCTYPE html>

<html>

<head>

<title>Test Prep</title>

<link rel="stylesheet"

type="text/css"

href="style.css">

</head>

<body>

<h1>This is a test</h1>

<p>Things to remember:</p>

Don’t stress out

Keep Calm and Test On</

li>

Do your best!

<p>Good Luck!</p>

</body>

</html>

#redText {

color: tomato;

}

li {

font-size: 24px;

}

.border {

border: 2px solid

gray;

}

}

550

B. What code should you use to add a 2 px solid gray
border to both the <h1> heading and the second list
element? Where should you add it and in which file?

C. What code should you modify to change the list item
font size from 24 px to 16 px? Which file should you
modify?

D. What code should you add to make all the listed items
appear gray? Where should you add the code?

answers 551

 1. The id selector is used to select a single element
with the corresponding id, while the class selector
is used to select multiple elements in the same class.

 2. Pixel

 3. #

 4. Period

 5. Width and height

 6. Padding

 7. A. You should add id=“redText” to the last <p> element
of the HTML file like this:
<p id="redText">Good Luck!</p>

552

B. You should add class=“border” to the <h1> element and
the second element to the HTML file like this:
<body>

<h1 class="border">This is a test</h1>

<p>Things to remember:</p>

 Don’t stress out

 <li class="border">Keep Calm and Test On

 Do your best!

<p>Good Luck!</p>

</body>

C. You should modify the “font-size: 24px;” declaration in
style with the “li” selector to say “font-size: 16px;” in the
CSS file like this:
li {

 font-size: 16px;

}

D. You should add this new declaration to the style with
the “li” selector in the CSS file:
li {

 font-size: 16px;

 color: gray;

}

553

554

Index

555555

SYMBOLS
= assignment operator, 151
+ addition operator, 342-343, 357
- subtraction operator, 357
* multiplication operator, 357
\ division operator, 357
== is equal to operator, 168, 170, 376-377, 403
> is greater than operator, 168, 376-377, 403
>= is greater than or equal to operator, 168,

376-377, 403
hashtag, 50, 316, 530, 540
< is less than operator, 168, 376-377, 403
<= is less than or equal to operator, 168,

376-377, 403
!+ is not equal to, 168, 376-377, 403
% modulus, 357
** exponential, 357
// floor division, 357

556

A
abacus, 13
abstraction, 141, 143
access, authorized, 463-466
access control, 465
accessibility, 90
“Accessibility” settings, 30
adding lists, 371
addition, string, 342-345
age-appropriate content, 90
algebraic expressions, 155
algorithm design, 141, 143
algorithms

about, 110-111
basic, 223-246
creating, 133-135
definition of, 6
description of, 6-7
studying, 111-112
using, 110-120

alpha testing, 91
American Standard Code for Information
Interchange (ASCII), 130

analysis, description of, 8
Analytical Engine, 115-116
anchor elements, 513-515
AND statements, 171-174, 288, 407, 409-410
animating a cat, 225-232
append function, 369, 372
Apple II, 15
application/application software (apps), 17,
21. See also programs; software

Arduinos, 72
arrays, 157, 247
artificial intelligence (AI) programs, 42,
140-141

assigning values, 324-325
assignment operators, 151
attacks, 470-475
attributes

about, 514-515
color, 528-532
href, 514-515, 527
id, 541
rel, 526
src, 515-517
type, 527

attributions, 101-103
authentication, 464-465
authorized access, 463-466

B
Babbage, Charles, 115
backdrops, 216, 276
back-end languages, 122-123
background, 528
backpack area, 206-207
bar graphs, 62
base 2, 126
base 10, 126
basic algorithms, 223-246
basic conditional statements, 284
basic loops, 278-280
Berners-Lee, Tim, 448
beta testing, 91-92
binary code

about, 123-125
description of, 48
representing letters using, 130
representing numbers using, 126-129

bitmap mode, 211
bits, 131
black hat hackers, 470
blank lines, printing, 340
blind users, 30-31
blocks

about, 200-207
for animating a cat, 225-232
Boolean, 254, 256-259, 279, 284, 287-288
broadcast, 276-277
C blocks, 274, 278-283
cap blocks, 274
clone, 293
control, 273-274, 291-293
event, 224, 275-277, 289-290
extensions for, 217-218
glide, 230-232
go to, 231
hat, 224-225
looks, 237-239
making your own, 299-302
math, 254-255
motion, 215, 234-236
My Blocks, 306

INDEX

557

nesting, 258, 278
operators, 254-259, 263-265
pen, 229, 242-243
procedure, 299-302
procedure call stack, 300
repeat, 273
reporter, 247-251, 254, 263-265
running, 223-224
sensing, 266-268
sound, 240-241
stack, 224
turn, 228-229
types of, 224-225
variables in, 247-253, 260-263

blocks menu, 202-203
body of function, 431
<body> element, 486-487
BOMBE, 469
Boolean, George, 157
Boolean blocks, 254, 256-259, 279, 284,
287-288

Boolean values/expressions
about, 156-157, 247
comparison operators in, 168-171
in compound conditional statements,

407-411
in conditional statements, 403
in Python, 323-324, 374-377

border color, 529
borders, 546-548
broadcast blocks, 276-277
brute force attacks, 470-471
build step, as part of engineering design
process, 71

built-in variables, 250-251
bytes, 131-132

C
C blocks, 274, 278-283
C++, uses for, 122-123
Caesar cipher, 468-469
calculations

with number variables, 351-352
operators for, 254-259

calling a function, 315, 430-431
calling procedures, 193-194, 300
camel case (mixed case), 329
cap blocks, 274
capitalization, 315
capitalize function, 347
cascading style sheets (CSS), 523-538

about, 481-482, 523-524
class selector in, 543
color attributes in, 528-532
colors in, 50
comments in, 534
element-specific properties in,

533-534
id selector in, 540-541
linking HTML files and, 526-528
making file for, 524-528
styling individual elements with,

539-553
cat, animating, 225-232
CDs (compact discs), 13, 18
census data, 61
central processing unit (CPU), 18-19
charts, 61, 63
ciphers, 467-469
citations, 103
class selector, 541-544
clone blocks, 293
cloning, 303-305
code

definition of, 46
how computers read, 123-132
HTML, 481-483, 484, 488-490
machine, 124-125
in Python, 314-315
reusing, 191-196

coding, early days of, 115-116
collaborating, 97-108
color attributes, CSS, 528-532
color coding, in Python, 317
color names, CSS, 529-532
colors

encoding, 48-51
representing, 51

Colossus Mark 1, 14
command-line interface (CLI), 30
commenting out, 82
comments

about, 81-83
attributions in, 101-102
in CSS, 534
in HTML code, 490
in Python, 315-316
in Scratch, 205

community, getting help from, 101-102
comparison operators, 168-170, 256-259,
376-377

compilers, 125

558

compiling, definition of, 124
compound conditional statements, 171-174,
285-288, 407-411

computable responses, 58
computational thinking, 139-146
computer, definition of, 2
computer networks, 444-447
computer science

concept areas of, 6-9
description of, 2-12

computer scientists, work of, 4
computer systems, designing, 68-72
computer technology, uses of, 3
computers

description of, 13-27
human-computer interaction, 29-37
impacts of, 9
as information processors, 41
interacting with, 29-37
parts of, 16-23
reading code and, 123-132
through time, 14-15

computing systems
definition of, 2
description of, 6

conditional statements, 163-178
about, 163-167
basic, 284
comparison operators in, 168-170
compound, 171-174, 285-288, 407-411
elif statements, 405-406
else if statements, 165-166, 174
else statements, 165, 404-405
nested, 174-175, 285-288, 411-414
in procedures, 302
in Python, 403-422
in Scratch, 283-288
while loops, 181, 393-397

conditionals (C blocks), 274
consumers, 4
content

age-appropriate, 90
of websites, 484

control blocks, 273-274, 291-293
convert function, 433-435
costume list, 210
costumes, 209-210, 237-239
countdowns, 386
counter variables, 381-386
cracking a code or cipher, 468
creating a web page, 481-496

creators, 4
credit, 101-102
cryptography, 466-469
CSS. See cascading style sheets (CSS)
cybersecurity, 463-479

D
data

about, 43-46
definition of, 8
description of, 8
encoding, 47-51
information flow and, 19-20
types of, 323-324
using, 61-63

data encoding schemes, 47-48
deaf users, 30-31
debugging programs

commenting out and, 82
description of, 31, 32
in Scratch, 233

declarations, 524-526
declaring procedures, 191-193
declaring variables, 150
decoding information, 47
decomposition, 141-142
decryption, 467-469
defensive programming, 73-76
defining a function, 430
diagrams for troubleshooting, 32
distributed denial-of-service (DDoS)
attacks, 475

documenting, 81-88
domain name system (DNS) servers, 455-456
double quotation marks, 316
downloading information, 449-450
drivers, 100

E
editor window, 311, 313
efficiency, algorithms and, 111-112
efficient, definition of, 57
electrical circuits, 123
elements

about, 484-486
anchor, 513-515
<body>, 486-487
in cascading style sheets (CSS), 533-534,

539-553
empty, 502
formatting, 498-499

559

<head>, 486-487
heading, 497-498
height of, 544-546
HTML text, 497-509
<html>, 486
identifying, 539-541
image, 515-517
link, 511-521
list, 503-505
list item, 503-504
paragraph, 498-499
unordered list, 503-504
website, 486-487
of websites, 486-487
width of, 544-546

elif statements, 405-406
else if statements, 165-166, 174
else statements, 165, 404-405
empty elements, 502
encoding colors, 48-51
encoding data, 47-51
encryption, 467-469
engineering

definition of, 68
everyday, 72

engineering design process, 68-71
ENIAC, 14-15
Enigma, 469
equal signs, 151
escaping a character, 338-339
ethernet, 445-446
event blocks, 224, 275-277, 289-290
event handlers, 188
events, 187-190
expectations, setting clear, 98
expressions, mathematical, 356-357
extension

.html, 482-483

.py, 313
extensions, 217
external actions, 188

f
Facebook, programming languages for, 122
feedback, incorporating, 89-96
files, saving, 313
float function, 355
floats, 352, 354-355
flowcharts

comparison operators in, 169-170
for conditional statements, 406

creating algorithms and, 133-135
else if statements in, 167
else statements in, 165
if . . . then statements in, 164
logical operators in, 172-173
nested conditionals in, 175
for three-letter word game, 412

for loops, 180, 381-392
forever loops, 278, 281
formatting elements, 498-499
formatting for loops, 381
formatting HTML, 488-490
formatting strings, 338-340
formatting variable names, 328-329
404 Not Found code (status code), 453
front-end languages, 122
functions

append, 369, 372
body of, 431
calling, 315, 430-431
capitalize, 347
convert, 433-435
defining, 430
definition of, 192
float, 355
input, 344-345
insert, 369-370, 372
int, 354
len, 371, 372
lists and, 367-372
lower, 346-347
premade, 103
print, 314-315, 334-337, 367-368
procedures and, 423
in Python, 311, 314-315, 423-442
range, 382-388
remove, 370, 372
reverse, 370-371, 372
sort, 370, 372
string, 345-347
swapcase, 347
turtle art, 428-429
turtle graphics, 423-429
upper, 347

g
game developers, 21
gigabytes, 132
glide block, 230-232
go to block, 231
graphical user interface (GUI), 30

560

graphics processing unit (GPU), 19
graphs, 61-62
grid system, 214-215

h
hackers, 469-470
hacktivists, 470
hardware

closer look at, 17-20
description of, 16
as part of computing systems, 23

hat blocks, 224-225
<head> element, 486-487
heading elements, 497-498
height of elements, 544-546
hexadecimal (HEX) color notation, 48, 49-50,
51, 530, 532

Hollerith Tabulating Machine, 61
Hopper, Grace, 125
horizontal rules, 499-501
hosts, 452
href attribute, 514-515, 527
HTML code, 481-483, 484, 488-490
.html extension, 482-483
HTML files, 452, 526-528
HTML text elements, 497-509
<html> element, 486
Hubble Space Telescope, 132
human-computer interaction, 29-37
hyperlinks, 511-512
hypertext markup language (HTML)

basic web pages and, 481-483
class selector in, 543-544
definition of, 448, 481
description of, 452
extension for, 482
formatting, 488-490
id attribute, 541
web browsers and, 484

hypertext transfer protocol (HTTP), 448, 453
hypertext transfer protocol secure (HTTPS),
453

i
id (identifier) selectors, 539-541
identifiers, 148-149, 152-153, 324
identifying an element, 539-541
IDLE (integrated development environment
program), 311

if . . . then statements, 163-167

if then statements, 283
if then else statements, 283
image editor, 211
image elements, 515-517
images

borders, margins, and padding for,
546-548

resizing, 544-546
impacts of computing, description of, 9
improve the solution, 71
incorporating feedback, 89-96
indentation, 383, 488
index, 366
infinite loops, 395-397
information

collecting and using, 57-66
data and, 44-45
decoding, 47
definition of, 45
downloading, 449-450

Information Age, 40-41
information processors, 41
inner lists, 372-373
input

description of, 17
information flow and, 19-20
user, 250-251, 344-345, 432-437

input data, 44, 46
input function, 344-345
insert function, 369-370, 372
int function, 354
integers, 352-354
internal actions, 188
internet, 444-462

about, 447-449
description of, 8-9
sending information over, 449-450
surfing web and, 451-458
web versus, 451

internet service providers, 450
interviews, 58
iOS, 22
IP address, 449-450, 455
IP-internet protocol, 449

j
JavaScript

interactivity and, 482
uses for, 122

Julius Caesar, 468

561

k
key words in Python, 326
keys, 467
kilobytes, 132

l
languages

back-end, 122-123
front-end, 122
JavaScript, 122, 482
natural, 140
PHP, 122, 482
See also hypertext markup language

(HTML); programming languages
len function, 371, 372
libraries, 103, 423
lidar, 42
line breaks, 499-501
line graphs, 62
linear scale questions, 60
link elements, 511-521
list elements, 503-505
list item element, 503-504
lists

about, 365
adding, 371
changing properties of, 533
functions and, 367-372
HTML text and, 503-505
inner, 372-373
list elements, 503-505
list item element, 503-504
for loops and, 387-388
operators and, 371
ordered, 505
punctuation for, 365-366
in Python, 323-324, 365-374
replacing values in, 368
in Scratch, 251-253
sorting, 370-371
sound, 212
sprite, 208-209
symbols for, 365
symbols for inner, 372-373
variables and, 157, 247
within lists, 372-374

local area networks (LANs), 445
logical operators, 171-174, 258, 407-411
looks blocks, 237-239
loop statements, 179-186
loops

basic, 278-280
forever loops, 278, 281
infinite, 395-397
for loops, 180, 381-392
nested, 182-183, 280-283, 397
in Python, 381-401
repeat loops, 278-279, 281-283
repeat until loops, 278-279
in Scratch, 274, 278-283
while loops, 181, 393-397

Lovelace, Ada, 115-117
lower function, 346-347
lowercase_and_underscores, 328

m
MAC (Media Access Control), 449
machine code, 124-125
Makey Makeys, 72
making your own blocks, 299-302
malware, 472
map apps, 41
margins, 546-548
math blocks, 254-255
mathematical expressions, 356-357
megabytes, 132
micro:bits, 72
mixed case (camel case), 329
mobile applications, programming
languages for, 121

mobile developers, 21
modules, 423-424
Morse code, 47
motion blocks, 215, 234-236
moving the turtle, 424-427
multiple-choice questions, 59-60
My Blocks, 306

n
naming conventions, 328-329
naming variables in Python, 325-327
natural language, 140
navigation menus, 513
navigators, 100
negative integers, 77
nested conditional statements, 174-175,
285-288, 411-414

nested loops, 182-183, 280-283, 397
nesting blocks, 258, 278
networks, description of, 8-9
Nexus, 448
NOT statements, 173-174, 288, 407, 411

562

number conversions, 355
number types, 352-355
numbers

representing using binary, 126-129
as variables, 323, 351-364

numeric values, 155-156

o
observations, 60
open-ended questions, 59
operating systems, 22
operations, order of, 358-359
operators

in expressions, 356
lists and, 371
logical, 171-174, 258, 407-411
in Scratch, 254-259, 263-265
string, 341-347

OR statements, 172-173, 288, 407, 409-410
order of operations, 358-359
ordered lists, 505
organization, in Python, 315-317
output

description of, 20
information flow and, 20
in Python, 312
return values, 434-437

output data, 44

p
packets, 449, 456
padding, 546-548
pair programming, 100
paragraph elements, 498-499
parameter values, 314
parameters, 194-196, 226-227, 383, 432-437
paraphrasing, 103
parentheses, 227, 358-359
Pascal case, 329
password checker, 394-395, 397
passwords, cyberattacks and, 470-471
pattern recognition, 141, 142
PEMDAS (Please Excuse My Dear Aunt
Sally), 358

pen blocks, 229, 242-243
personal identification numbers (PINs), 471
phishing, 474-475
PHP

interactivity and, 482
uses for, 122

pie charts, 63

pixels (picture element), 426, 540-541
place values, binary, 127-128
plain text files, for README files, 83
plan, as part of engineering design process,
70

positive integers, 77
premade functions, 103
print function, 314-315, 334-337, 367-368
printing mathematical expressions, 359
problem, identifying, 69-70
procedure blocks, 299-302
procedure call stack block, 300
procedures, 191-198

calling, 193-194, 300
conditional statements in, 302
declaring, 191-193
functions and, 423

processing, description of, 18-19
programming

defensive, 73-76
description of, 6-7
early days of, 115-116
pair, 100
See also Python; Scratch

programming languages, 121-138
about, 121
creating algorithms and, 133-135
description of, 113
how computers read code, 123-132
using, 122-123

programs
algorithms and, 112-114
applications versus, 17
definition of, 6
as part of computing systems, 6
See also application/application

software (apps); software
prompt, in Python, 311
protocols, 445-446
pseudocode, 133, 182
punch cards, 116
punctuation

being careful with, 315
for lists, 365-366
See also symbols; individual punctuation

marks
.py extension, 313
Python

algorithms and, 113-114
code in, 314-315
color coding in, 317

563

conditional statements in, 403-422
functions in, 311, 314-315, 423-442
getting started in, 310-321
key words in, 326
lists and Boolean expressions in, 365-380
for loops in, 381-392
loops in, 381-401
numbers as variables in, 351-364
organization in, 315-317
prompt in, 311
reserved words in, 153
strings in, 333-350
uses for, 122-123
variables in, 323-332, 351-364
while loops and nested loops in, 393-401

Q
quotation marks

for comments, 316
in print function, 335
in strings, 333-334, 338-339

r
radar, 42
raindrops, 303-305
RAM, 18
range function, 382-388
ransomware, 472
rational numbers, 77
README files, 83-84, 101-102
rel attribute, 526
remove function, 370, 372
repeat blocks, 273
repeat loops, 278-279, 281-283
repeat until loops, 278-279
reporter blocks, 247-251, 254, 263-265
reserved words, 153
return values, 196, 434-437
reusing scripts, 299-308
reverse function, 370-371, 372
RGB color notation, 48, 49, 51, 131, 531-532
roles, creating clear, 99
Ruby, uses for, 122
running blocks, 223-224

s
sandboxing, 466
say block, 227
scanners, 48-49
Scratch

about, 200

basic algorithms in, 223-246
blocks in, 200-207, 215, 217-218
blocks types in, 234-243, 260-268,

289-293
cloning in, 303-305
conditional statements in, 283-288
control blocks in, 273-274
data and operators in, 247-272
debugging strategies for, 233
event blocks in, 275-277
getting started in, 200-222
loops in, 278-283
making your own blocks in, 299-302, 306
operators in, 254-259, 263-265
reusing scripts in, 299-308
sharing projects in, 217
sprites in, 208-216

Scratch cat, 225-232
screen readers, 31
scripts, 223-246

about, 223-224
animating a cat with, 225-232
debugging strategies for, 233
description of, 203-204
reusing, 299-308
storing, 206-207
walk, 226-230
See also blocks

scripts area, 204
selectors, 524-526
self-driving cars, 42
sensing blocks, 266-268
servers, 452
shell window, 311-312
single quotation marks, 316, 336
slide rules, 14
smartphones, 13, 15
social engineering, 474-475
social media apps, 41-42, 474-475
software

closer look at, 21-23
description of, 16
as part of computing systems, 23
system, 22
troubleshooting strategies and, 33
See also application/application

software (apps); programs
sort function, 370, 372
sorting lists, 370-371
sound blocks, 240-241
sound editor, 212

564

sound list, 212
sounds, for sprites, 212
sprite lists, 208-209
sprites, 200, 208-216, 225-232
spyware, 472
src attribute, 515-517
stack blocks, 224
stage, 213-216
start parameter, 383
status code (404 Not Found code), 453
step parameter, 383
stop parameter, 383
storage, description of, 18
storing information, 40-55
storing scripts, 206-207
strengths, focusing on, 98
string addition, 342-345
string functions, 345-347
string operators, 341-347
string values, 263
strings

description of, 154
formatting, 338-340
in Python, 323-324, 333-350

styles, 524-526
styling with CSS, 523-538
subroutines, 280-283
surveys, 58-60
swapcase function, 347
symbols

#, 316
=, 151
>>>, 311
backslash, 338
for Boolean expressions, 403
comparison operators, 168-170, 376
for CSS comments, 534
double quotation marks, 316
for HTML comments, 490
for inner lists, 372-373
for mathematical operations, 357
parentheses, 227, 358-359
quotation marks, 316, 333-334, 335,

338-339
single quotation marks, 316, 336
underscore (_), 152

syntax, 314, 315
system software, 22
systematic approach to troubleshooting,
31-32

t
tags, 484-486, 488-489, 497-498
team, working on a, 97-99
terabytes, 132
test cases, 74, 75-76
testing, 71, 73-80, 82
text displays, on multiple lines, 336
text editors, 482
three-letter word game, 411-414
thumbnail images, 208-209
timelines, setting realistic, 98
touch screens, 20
Transmission Control Protocol (TCP), 456-457
Traveling Salesperson Problem, 112
Trojan horse, 472
troubleshooting

definition of, 31
strategies for, 32-33
See also debugging programs

truth tables, 410-411
Turing, Alan, 469
turn block, 228-229
turtle graphics, 423-429
Twitter, programming languages for, 122
two-factor authentication, 465
type attribute, 527

u
underscore symbol, 152
Uniform Resource Locator (URL), 454
unordered list elements, 503-504
upper function, 347
usability, 90
USB flash drives, 18
use cases, 74-75
User Datagram Protocol (UDP), 458
user input, 250-251, 344-345, 432-437
user interface (UI), 29-31
user-centered design, 89-91

v
values

assigning, 324-325
in expressions, 356
numeric, 155-156
replacing in lists, 368
return, 196, 434-437
returning, 196
variable, 148-151

variables, 148-162
about, 148-149

565

assigning and naming, 150-153
built-in, 250-251
calculations with number, 351-352
changing value of string, 337
counter, 381-386
declaring, 150
formatting names of, 328-329
naming, 325-327
naming with strings, 334
numbers as, 323, 351-364
parameters, 194-196
in Python, 323-332, 351-364
in Scratch, 247-253, 260-263
types of information stored by, 154-157
See also conditional statements

vector mode, 211
video conference services, 458
viruses, 464, 473

w
walk script, 226-230
web. See World Wide Web
web browsers, 483, 484
web developers, 21
web pages

creating basic, 492-496
programming languages for, 121

websites
accessing, 451-453
building blocks of, 481-482

content of, 484
definition of, 121
elements of, 486-487
finding, 454-456
programming languages for,

122
tools for writing, 482-483
viewing, 483

while loops, 181, 393-397
white hat hackers, 469-470
wide area networks (WANs), 445
width of elements, 544-546
wi-fi, 446
Windows, 22
wireless, 445-446
workloads, equal, 99
World Wide Web

origin of, 448-449
surfing, 451-458
using internet to surf, 451-458
See also web pages; websites

worms, 473

x
x- and y-coordinates, 214-215
xp (experience points), 154

y
YouTube, programming languages for,
122

566

	Cover
	Copyright Page
	Title Page
	Introduction
	Contents
	Unit 1: Computing Systems
	Chapter 1: What Is Computer Science?
	Chapter 2: What Is A Computer?
	Chapter 3: How Do We Interact with Computers?

	Unit 2: Data and Analysis
	Chapter 4: Storing Information
	Chapter 5: Collecting and Using Information

	Unit 3: Software Engineering
	Chapter 6: Designing Computer Systems
	Chapter 7: Testing
	Chapter 8: Documenting
	Chapter 9: Incorporating Feedback
	Chapter 10: Collaborating

	Unit 4: Algorithms and Programming
	Chapter 11: Using Algorithms
	Chapter 12: Programming Languages
	Chapter 13: Computational Thinking

	Unit 5: Universal Programming Principles
	Chapter 14: Variables
	Chapter 15: Conditional Statements
	Chapter 16: Loops
	Chapter 17: Events
	Chapter 18: Procedures

	Unit 6: Programming with Scratch
	Chapter 19: Getting Started
	Chapter 20: Basic Algorithms
	Chapter 21: Data and Operators
	Chapter 22: Control Blocks and Event Blocks
	Chapter 23: Reusing Scripts

	Unit 7: Programming in Python
	Chapter 24: Getting Started with Python
	Chapter 25: Variables in Python
	Chapter 26: Strings
	Chapter 27: Numbers as Variables
	Chapter 28: Lists and Boolean Expressions
	Chapter 29: For Loops
	Chapter 30: While Loops and Nested Loops
	Chapter 31: Conditional Statements
	Chapter 32: Functions

	Unit 8: Web Development
	Chapter 33: What Is the Internet?
	Chapter 34: Cybersecurity
	Chapter 35: Creating a Basic Web Page
	Chapter 36: HTML Text Elements
	Chapter 37: Link Elements
	Chapter 38: Styling with CSS
	Chapter 39: Styling Individual Elements with CSS

	Index

